首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1414-1423    DOI: 10.13544/j.cnki.jeg.2017.06.003
工程地质力学 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
王洪建1, 刘大安2, 黄志全1,3, 袁广祥1, 吕晓春1, 牛晶蕊2, 赵子江2, 石晓闪2
1. 华北水利水电大学资源与环境学院 郑州 450045;
2. 中国科学院页岩气与地质工程重点实验室, 中国科学院地质与地球物理研究所 北京 100029;
3. 新疆工程学院 乌鲁木齐 830023
WANG Hongjian1, LIU Da'an2, HUANG Zhiquan1,3, YUAN Guangxiang1, LÜ Xiaochun1, NIU Jingrui2, ZHAO Zijiang2, SHI Xiaoshan2
1. School of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045;
2. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;
3. Xinjiang Institude of Engineering, Urumqi 830023
 全文: PDF (5633 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 页岩气储层的岩石力学特性对压裂改造效果影响极大,开展页岩破坏机理、力学特性和脆性评价方面的研究,可以为页岩气开采中大规模体积压裂提供技术支持。本文对龙马溪组黑色炭质页岩进行单轴压缩试验,得到以下结论:(1)黑色页岩具有明显的层状薄片矿物结构,矿物主要成分为石英和方解石,结构面固有强度较高;(2)由于强结构面的影响,倾斜层理试件具有较高的弹性模量与单轴抗压强度,但是总体积应变量较小;平行或者垂直层理试件的弹性模量与单轴抗压强度较小,总体积应变量反而大;(3)随着层理倾角β的增大,层状页岩单轴压缩试验测得的起裂应力水平指标表现为"中间小两头大"的U型规律,即层理倾角为30°或60°时测量值较小,而0°或90°时较大;(4)岩石脆性是可压裂性的关键因素,层理角度为30°或者60°时,脆性指标较大,页岩的可压裂性更强,脆性指标的变化规律大致呈倒U型。本文的研究对评价页岩的可压裂性、提高压裂改造效果具有重要的现实意义和应用价值。
E-mail Alert
关键词页岩   单轴压缩   体积应变   起裂应力水平   脆性指标     
Abstract: The mechanical properties of shale gas reservoir have great influences on fracturing effect. It is of great necessity to investigate damage mechanism, mechanical properties and brittleness evaluation of shale rock and then to provide technical support for large-scale volume fracturing of shale gas exploitation. This paper conducts uniaxial compression tests on black carbonaceous shale of Lungmachi Formation. The test results indicate the follows. The black shale rock has obvious layered flake mineral structure. Its main mineral components are quartz and calcite, which causes the structure surface having high strength. Due to the effects of strong structure surface, shale rock with inclined bedding plane has larger values of elastic modulus and uniaxial tensile strength and the minimum total volumetric strains. However, when the bedding plan is parallel or vertical to the loading direction, the shale rock has smaller values of elastic modulus and uniaxial tensile strength and the maximum total volumetric strain. When the bedding angle β is increasing, the trend of crack initiation index behaves like a U-shaped curve, which is to say, the initiation crack indexes have smaller values at the β of 30° or 60° whereas bigger values at the β of 0° or 90°.It can be seen that brittleness is the key factor to rock fracturing. At the β of 30° or 60°,the rock has larger brittleness index with high fracturing variations of brittleness behave as an inverted U-shaped curve. The study of evaluating shale rock fracturing capability and improving the fracturing effect has important practical significance and application value.
Key wordsShale rock   Uniaxial compression test   Volumetric strain   Crack initiation stress   Brittleness index   
收稿日期: 2016-09-02;


通讯作者: 黄志全(1970-),男,博士,教授,博士生导师,主要从事岩土及地质灾害防治方面研究.Email:huangzhiquan@ncwu.edu.cn     E-mail: huangzhiquan@ncwu.edu.cn
作者简介: 王洪建(1986-),男,博士,讲师,从事岩石力学与工程地质方面的研究.Email:wanghj@ncwu.edu.cn
. 层状页岩岩石力学特性及其脆性评价[J]. 工程地质学报, 2017, 25(6): 1414-1423.
. MECHANICAL PROPERTIES AND BRITTLENESS EVALUATION OF LAYERED SHALE ROCK[J]. Journal of Engineering Geology, 2017, 25(6): 1414-1423.
[1] Ahn C H,Dilmore R,Wang J Y. 2014. Development of innovative and efficient hydraulic fracturing numerical simulation model and parametric studies in unconventional naturally fractured reservoirs[J]. Journal of Unconventional Oil and Gas Resources, 8:25~45.
[2] Altindag R,Guney A. 2010. Predicting the relationships between brittleness and mechanical properties(UCS,TS and SH) of rocks[J]. Scientific Research and Essays, 5 (16):35~39.
[3] Altindag R. 2003. The correlation of specific energy with rock brittleness concept on rock cutting[J]. Journal of the South African Institute of Mining and Metallurgy, 103 (3):163~171.
[4] Barton N,Bandis S,Bakhtar K. 1985. Strength, deformation and conductivity coupling of rock joints[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 22 (3):121~140.
[5] Barton N,Choubey V. 1977. The shear strength of rock joints in theory and practice[J]. Rock mechanics, 10 (1~2):1~54.
[6] Bazant Z P,Kazemi M T. 1990. Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete[J]. International Journal of Fracture, 44 (2):111~131.
[7] Bell F G,Lindsay P. 1999. The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa[J]. Engineering Geology, 53 (1):57~81.
[8] Bieniawski Z T. 1967. Mechanism of brittle fracture of rock:part Ⅰ、Ⅱ and Ⅲ[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 4 (4):395~430.
[9] Bordia S K. 1972. Complete stress-volumetric strain equation for brittle rock up to strength failure[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 9 (1):17~24.
[10] Cai M. 2010. Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks[J]. Rock Mechanics and Rock Engineering, 43 (2):167~184.
[11] Cook N G W. 1970. An experiment proving that dilatancy is a pervasive volumetric property of brittle rocks loaded to failure[J]. Rock Mechanics and Rock Engineering, 2 (4):181~188.
[12] Diao H Y. 2013. Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Acta Petrologica Sinica, 29 (9):3300~3306.
[13] Hoek E,Bieniawski Z T. 1965. Brittle fracture propagation in rock under compression[J]. International Journal of Fracture, 1 (3):137~155.
[14] Honda H,Sanada Y. 1956. Hardness of coal[J]. Fuel, 35 (4):451~461.
[15] Howarth D F,Rowlands J C. 1987. Quantitative assessment of rock texture and correlation with drill-ability and strength properties[J]. Rock Mechanics and Rock Engineering, 20 (1):57~85.
[16] Huang S L,Xu J S,Ding X L,et al. 2010. Study of layered rock mass composite model based on characteristics of structural plane and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (4):743~756.
[17] Hucka V,Das B. 1974. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11 (10):389~392.
[18] Kulatilake P H S W,Malama B,Wang J L. 2001. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics and Mining Sciences, 38 (5):641~657.
[19] Lawn B R,Marshall D B. 1979. Hardness, toughness and brittleness:an indentation analysis[J]. Journal of American Ceramic Society, 62 (7/8):347~350.
[20] Li Q H,Chen M,Jin Y,et al. 2012. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (8):1680~1685.
[21] Liu C,Wang H J,Huo J Y,et al. 2014. Potential risks of environmental disaster in ‘shale gas revolution’ and Its preventive measures[J]. China Population, Resources and Environment, 24 (5):73~75.
[22] Liu Z S,Sun Z D. 2015. New brittleness indexes and their application in shale/clay gas reservoir prediction[J]. Petroleum Exploration and Development, 42 (1):117~124.
[23] Mao H J,Yang C H. 2005. Study on effects of discontinuities on mechanical characters of slate[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (20):3651~3656.
[24] Martin C D. 1993. The strength of massive Lac du Bonnet granite around underground opening[D]. Manitoba, Canada:University of Manitoba.
[25] Martin C D. 1997. Seventeenth Canadian geotechnical colloquium:the effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 34 (5):698~725.
[26] Mayerhofer M J,Lolon E,Warpinski N R,et al. 2010. What is stimulated reservoir volume?[J]. Spe Production & Operations, 25 (1):89~98.
[27] Nemat-Natser S,Horii H. 1982. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst[J]. Journal of Geophysical Research Soil Earth, 87 (B8):6805~6821.
[28] Pan P Z,Zhou H,Feng X T. 2006. Analysis of mechanism of rock behaviors of classes I and Ⅱ using elastoplastic cellular automata[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (2):3823~3829.
[29] Peng G Z. 1983. Relation between the mechanical performance and structural plane direction of shale under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 5 (2):101~109.
[30] Richart F E,Brandtzaeg A,Brown R L. 1928. A study of the failure of concrete under combined compressive stresses[R]. University of Illinois Bulletin, 26 (12).
[31] Wang H J,Zhao F,Huang Z,et al. 2017. Experimental Study of Mode-I Fracture Toughness for Layered Shale Based on Two ISRM-Suggested Methods[J]. Rock Mechanics and Rock Engineering, 50 (7):1933~1939.
[32] Wang H,Guo Y T,Zhang P,et al. 2016. Laboratory tests for mechanical properties of deep seated shale in Jiaoshiba Block of Sichuan Basin[J]. Journal of Engineering Geology, 24 (5):871~880.
[33] Wang R Y,Ding W L,Wang Z,et al. 2015. Progress of geophysical well logging in shale gas reservoir evaluation[J]. Progress in Geophysics, 30 (1):228~241.
[34] Wang Y,Li X,Wu Y F,et al. 2014. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (2):264~275.
[35] Yang C,Xu G L,Shen Y J,et al. 2014. Joint network simulation based reliability analysis for jointed rock slopes[J]. Journal of Engineering Geology, 22 (6):1221~1226.
[36] Zhai Y J. 2014. Shale gas accumulation conditions and favourable areas forecast of Lower Silurian in east Chongqing[D]. Beijing:China University of Geosciences(Beijing).
[37] Zhang B,Li S C,Zhang D F,et al. 2012. Uniaxial compression mechanical property test, fracture and damage analysis of similar material of jointed rock mass with filled cracks[J]. Rock and Soil Mechanics, 33 (6):1647~1652.
[38] Zhang X P,Wang S J,Han G Y,et al. 2011. Crack propagation study of rock based on uniaxial compressive test-a case study of schistose rock[J]. Chinese Journal of Rock Mechanics and Engineering, 30 (9):1772~1781.
[39] Zhang X P,Wong L N Y,Wang S J,et al. 2011. Engineering properties of quartz mica schist[J]. Engineering Geology, 121 (3):135~149.
[40] 翟羽佳. 2014. 渝东地区下志留统页岩气富集条件及有利区预测[D]. 北京:中国地质大学(北京).
[1] 兰恒星, 陈俊辉, 伍宇明. 三轴压缩试验前后含气页岩微纳尺度裂隙空间分布特征研究[J]. 工程地质学报, 2018, 26(1): 24-35.
[2] 李志清, 沈鑫, 戚志宇, 胡瑞林. 基于压汞法与气体吸附法的页岩孔隙结构特征对比研究[J]. 工程地质学报, 2017, 25(6): 1405-1413.
[3] 兰恒星, 伍宇明, 李全文, 陈俊辉, 赵晓霞. 龙马溪组页岩三维缝网重构及分形分析[J]. 工程地质学报, 2017, 25(6): 1557-1565.
[4] 李关访, 李晓, 李守定, 赫建明, 张召彬, 孙宝才. 页岩储层压裂工艺技术在渝东地区应用[J]. 工程地质学报, 2017, 25(3): 853-857.
[5] 万小乐, 赫建明, 郑博. 单轴加载条件下页岩层理角度对水力压裂缝扩展规律影响研究[J]. 工程地质学报, 2017, 25(1): 88-94.
[6] 汪虎, 郭印同, 张萍, 王磊, 侯振坤. 四川盆地焦石坝区块深部页岩力学特性试验研究[J]. 工程地质学报, 2016, 24(5): 871-880.
[7] 赵海军, 马凤山, 刘港, 郭捷, 冯雪磊. 不同尺度岩体结构面对页岩气储层水力压裂裂缝扩展的影响[J]. 工程地质学报, 2016, 24(5): 992-1007.
[8] 杜海民, 马巍, 张淑娟, 周志伟. 应变率和含水率对冻土破坏应变能密度影响特性试验研究[J]. 工程地质学报, 2015, 23(s1): 38-43.
[9] 梅华, 朱燕, 牛传星. 饱和-失水循环作用下蚀变岩劣化规律研究[J]. 工程地质学报, 2015, 23(6): 1039-1044.
[10] 戚国庆, 黄润秋. 基质吸力变化引起的体积应变研究[J]. 工程地质学报, 2015, 23(3): 491-497.
[11] 邓涛, 詹金武, 黄明, 范富童. 酸碱环境下红层软岩—泥质页岩的崩解特性试验研究[J]. 工程地质学报, 2014, 22(2): 238-243.
[12] 蔡国军, 黄润秋, 许强, 林锋, 汤明高. 片麻岩单轴压缩条件下破裂过程AE试验研究[J]. 工程地质学报, 2011, 19(4): 472-477.
[13] 廖秋林,李晓,李守定. 土石混合体重塑样制备及其压密特征与力学特性分析[J]. 工程地质学报, 2010, 18(3): 385-391.
[14] 林锋,黄润秋,蔡国军. 小湾水电站低高程坝基开挖卸荷松弛机理试验研究[J]. 工程地质学报, 2009, 17(5): 606-611.
版权所有 © 2009 《工程地质学报》编辑部    京ICP备05029136号-13
地址:北京市朝阳区北土城西路19号  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn