工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1430-1437    DOI: 10.13544/j.cnki.jeg.2017.06.005
工程地质力学 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
黏性土失水开裂多场耦合离散元数值模拟
张晓宇1, 许强2, 刘春1,2,3, 施斌1
1. 南京大学地球科学与工程学院 南京 210023;
2. 地质灾害防治与地质环境保护国家重点实验室(成都理工大学) 成都 610059;
3. 南京大学(苏州)高新技术研究院 苏州 215123
NUMERICAL SIMULATION OF DRYING CRACKING USING MULTI-FIELD COUPLING DISCRETE ELEMENT METHOD
ZHANG Xiaoyu1, XU Qiang2, LIU Chun1,2,3, SHI Bin1
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023;
2. State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection, Chengdu University of Technology, Chengdu 610059;
3. Nanjing University(Suzhou) High-Tech Institute, Suzhou 215123
 全文: PDF (3437 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 黏性土在失水过程中逐渐变形开裂,裂隙相互交错形成网络,这一过程涉及水热力等多场耦合的作用。本文基于南京大学自主研发的三维离散元软件MatDEM,采用紧密堆积离散元模型对土体开裂进行模拟。在此模型中,每个离散元单元代表一定体积的土颗粒、孔隙和孔隙水的集合体。单元具有含水量属性,并采用有限差分思想计算水分运移量,实现了水分场模拟。同时,考虑水分场对土体抗拉强度等力学性质的影响,建立水分场和应力场的耦合。在数值模拟中,假定土体表面水分以一定速率蒸发,根据试验数据由含水量计算单元直径和力学参数,从而实现黏土蒸发失水、收缩和开裂变形过程模拟。数值模拟与前人室内试验结果基本一致,能较好地再现开裂过程中的各个阶段。本文为研究多场作用下土体变形破坏模拟提供了一个新的思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词黏土   土体开裂   离散元   数值模拟     
Abstract: Desiccation cracks can be formed in clay soil during drying, which connects with each other to generate a network. This process involves multi-field coupling effect, including water, thermal and stress. A close-packed model is used to simulate the formation of desiccation cracks. The simulation is based on the 3D discrete element modeling software MatDEM that is independently developed by Nanjing University. In the model, a discrete unit represents an assembly of soil particles, pore and pore water. Elements in the model are assigned moisture properties, where the transport of moisture can be simulated based on the Finite Difference Method. Furthermore, the coupling of moisture field and stress field is built, which considers the influence of moisture on the tensile strength of soil. In numerical simulation, assuming the water of soil surface evaporates at a certain rate, element diameters and mechanical parameters are calculated from moisture according the experimental data, so as to simulate evaporation, shrinkage and cracking processes of clay soil. Numerical simulation results coincide with the laboratory results, and each step of cracking process can be well simulated. This paper provides an alternative way for the numerical simulation of soil deformation and failure under multi-field effect.
Key wordsClay soil   Desiccation crack   DEM   Numerical simulation   
收稿日期: 2016-09-14;
基金资助:

国家自然科学基金项目(41230636,41302216),国家杰出青年科学基金项目(41225011),江苏省自然科学基金青年项目(BK20130377)资助

通讯作者: 刘春(1984-),男,博士,副教授,硕士生导师,长期从事计算工程地质领域研究.Email:chunliu@nju.edu.cn     E-mail: chunliu@nju.edu.cn
作者简介: 张晓宇(1993-),男,硕士生,从事地质工程离散元模拟领域研究.Email:zhangxiaoyunju@163.com
引用本文:   
. 黏性土失水开裂多场耦合离散元数值模拟[J]. 工程地质学报, 2017, 25(6): 1430-1437.
. NUMERICAL SIMULATION OF DRYING CRACKING USING MULTI-FIELD COUPLING DISCRETE ELEMENT METHOD[J]. Journal of Engineering Geology, 2017, 25(6): 1430-1437.
 
[1] Amarasiri A L,Kodikara J K,Susanga C. 2011. Numerical modelling of desiccation cracking[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 35 (1):82~96.
[2] Chertkov V Y. 2012. An integrated approach to soil structure, shrinkage, and cracking in samples and layers[J]. Geoderma, (s173~174):258~273.
[3] Cundall P A,Strack O D L. 1979. A discrete numerical mode for granular assemblies[J]. Géotechnique, 29 (1):47~65.
[4] El Youssoufi M S,Delenne J Y,Radjai F. 2004. Self-stresses and crack formation by particle swelling in cohesive granular media[J]. Physical Review E, 71(5Pt1):
[5] El Shamy U,Zamani N. 2012. Discrete element method simulations of the seismic response of shallow foundations including soil-foundation-structure interaction[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 36 (10):1303~1329.
[6] Ferber V,Auriol J C C,Cui Y J J,et al. 2008. Wetting-induced volume changes in compacted silty clays and high-plast[J]. Canadian Geotechnical Journal, 45 (45):252~265.
[7] Gao Z P. 2007. The research on the cracking property of expansive soils in wet-dry cycling of natural weather and cracking evolution of cutting slope[D]. Changsha:Changsha University of Science & Technology.
[8] Hirobe S,Oguni K. 2016. Coupling analysis of pattern formation in desiccation cracks[J]. Computer Methods in Applied Mechanics & Engineering, 307:470~488.
[9] Konrad J M,Ayad R. 1997. A idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal, 34 (4):477~488.
[10] Liu C,Pollard D D,Gu K,et al. 2015. Mechanism of formation of wiggly compaction bands in porous sandstone:2. Numerical simulation using discrete element method[J]. Journal of Geophysical Research Solid Earth, 120 (12):8153~8168.
[11] Liu C,Pollard D D,Shi B. 2013. Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals[J]. Journal of Geophysical Research Solid Earth, 118 (1):71~82.
[12] Liu C,Shi B,Gu K,et al. 2014. Development and application of large-scale discrete element simulation system for rock and soil[J]. Journal of Engineering Geology, 22 (S):551~557.
[13] Liu C,Shi B,Shao Y,et al.2013 Experimental and numerical investigation of the effect of the urban heat island on slope stability[J]. Bulletin of Engineering Geology & the Environment, 72 (3-4):303~310.
[14] Liu C,Wang B J,Shi B,et al. 2008. Analytic method of morphological parameters of cracks for rock and soil based on image processing and recognition[J]. Chinese Journal of Geotechnical Engineering, 30 (9):1383~1388.
[15] Liu C. 2012. Image analysis and numerical simulation of soil temperature field, strength and deformation in urban heat island environment[D]. Nanjing:Nanjing University.
[16] Morris P H,Graham J,Williams D J. 1992. Cracking in drying soils[J]. Canadian Geotechnical Journal, 29 (2):263~277.
[17] Peron H,Delenne J Y,Laloui L,et al. 2009. Discrete element modelling of drying shrinkage and cracking of soils[J]. Computers and Geotechnics, 36 (1-2):61~69.
[18] Ran L Z,Song X D,Tang C S, 2011. Laboratorial investigation on tensile strength of expansive soil during drying[J]. Journal of Engineering Geology, 19 (4):620~625.
[19] Shen Z J,Deng G. 2004. Numerical simulation of crack evolution in clay during drying and wetting cycle[J]. Rock and Soil Mechanics, 25 (S2):1~6.
[20] Shi B,Tang C S,Wang B J,et al. 2009. Development and mechanism of desiccation cracking of clayey soil under different Temperatures[J]. Geological Journal of China Universities, 15 (2):192~198.
[21] Shuichiro Yoshida, Kazuhide Adachi. 2001. Effects of cropping and puddling practices on the cracking patterns in paddy fields[J]. Soil Science & Plant Nutrition, 47 (3):519~532.
[22] Si M J,Jiang M J,Zhou C B. 2013. Numerical simulation of desiccation cracking of clay soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 35 (S2):286~291.
[23] Tang C S,Cui Y J,Anh-minh Tang, et al. 2012. Shrinkage and desiccation cracking process of expansive soil and its temperature-dependent behaviour[J]. Chinese Journal of Geotechnical Engineering, 34 (12):2181~2187.
[24] Tang C S,Shi B,Liu C. 2012. Study on desiccation cracking behaviour of expansive soil[J]. Journal of Engineering Geology, 20 (5):663~673.
[25] Tang C,Shi B,Liu C,et al. 2008. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 101 (3-4):204~217.
[26] Tessier D. 1984. Étude expérimentale de l'organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessiccation et de la réhumectation(France)[D]. Paris, France:Université de Paris VⅡ.
[27] Zhao X L,He J M,Dong G F,et al. 2012. New developments of microscale study on granular soil using discrete element method[J]. Journal of Engineering Geology, 20 (4):607~613.
[28] 高志朋. 2007. 膨胀土干湿循环开裂特性及路堑边坡开裂演化过程研究[D]. 长沙:长沙理工大学.
[29] 刘春. 2012. 城市热岛环境中土体温度场、强度和变形的数值模拟与图像分析[D]. 南京:南京大学.
[1] 黎晨, 李丽慧, 王学良, 廖小辉. 基于Flac3D和3DEC数值模拟技术的岩体稳定性评价[J]. 工程地质学报, 2017, 25(Z1): 119-128.
[2] 黎晨, 李丽慧, 王学良, 廖小辉. 基于Flac3D和3DEC数值模拟技术的岩体稳定性评价[J]. 工程地质学报, 2017, 25(s2): 73-82.
[3] 卢蓉, 马凤山, 郭捷, 惠鑫, 刘国伟. 开挖顺序对Y形巷道交岔点变形影响分析[J]. 工程地质学报, 2017, 25(s1): 103-107.
[4] 刘港, 赵海军, 马凤山, 冯雪磊, 郭捷, 王宏民. 裂隙岩体渗流应力耦合研究现状与展望[J]. 工程地质学报, 2017, 25(s1): 235-247.
[5] 朱大鹏, 李静雅, 田杰. 爆破震动下抗滑桩与嵌固段岩体相互作用研究[J]. 工程地质学报, 2017, 25(s1): 170-177.
[6] 陈逸方, 刘之葵. 不同含水率条件下赤泥掺量对红黏土力学性质及结构的影响[J]. 工程地质学报, 2017, 25(s1): 194-199.
[7] 陈学军, 李佳明, 宋宇, 杨越, 陈李洁. 纳米膨润土对桂林红黏土力学性质的影响[J]. 工程地质学报, 2017, 25(s1): 207-212.
[8] 陈鸿宾, 黄翔, 陈学军, 周兴, 胡舒伟. 硬化性红黏土应力-应变曲线拟合分析[J]. 工程地质学报, 2017, 25(s1): 225-229.
[9] 沙桢晖, 梁维云, 郑恒, 颜荣涛, 韦昌富. 大气环境作用下红黏土边坡湿热特性[J]. 工程地质学报, 2017, 25(s1): 377-383.
[10] 刘朝安, 贾宁, 孟庆辉. T型触探矩形截面探头特性研究[J]. 工程地质学报, 2017, 25(s1): 440-444.
[11] 张盼盼, 冯永, 李旭光. 轻量土-支挡结构联体模型在陡坡回填路基中的模拟应用研究[J]. 工程地质学报, 2017, 25(s1): 463-469.
[12] 陈铭, 袁立江, 尹洪峰, 黄双, 王晶玮, 韩明, 邵峰, 徐耀红, 王会义. 基于Hydrus-1D的某电厂COD污染物在包气带中迁移规律研究[J]. 工程地质学报, 2017, 25(s1): 490-495.
[13] 陈学军, 陈李洁, 宋宇, 王贺, 周兴, 李佳明. Al2O3改良红黏土的力学试验研究[J]. 工程地质学报, 2017, 25(s1): 230-234.
[14] 杨爱武, 张卫. 基于两种波形作用结构性软黏土动力特性试验研究[J]. 工程地质学报, 2017, 25(6): 1395-1404.
[15] 徐云山, 曾召田, 吕海波, 范理云, 覃汉莲. 高温下红黏土热导率的变化规律试验研究[J]. 工程地质学报, 2017, 25(6): 1465-1473.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn