工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1438-1448    DOI: 10.13544/j.cnki.jeg.2017.06.006
工程地质力学 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究
祁兆鑫1,2, 余冬梅1, 刘亚斌1,2, 付江涛1,2, 胡夏嵩1,3, 李淑霞1,2, 赵丹1,2
1. 中国科学院青海盐湖研究所, 青海省盐湖地质与环境重点实验室 西宁 810008;
2. 中国科学院大学 北京 100049;
3. 青海大学 西宁 810016
EXPERIMENTAL RESEARCH ON FACTORS AFFECTING SHEAR STRENGTH OF HALOPHYTE ROOT-SOIL COMPOSITE SYSTEMS IN COLD AND ARID ENVIRONMENTS
QI Zhaoxin1,2, YU Dongmei1, LIU Yabin1,2, FU Jiangtao1,2, HU Xiasong1,3, LI Shuxia1,2, ZHAO Dan1,2
1. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Key Laboratory of Salt Lake Geology and Environment of the Qinghai Province, Xining 810008;
2. University of Chinese Academy of Sciences, Beijing 100049;
3. Qinghai University, Xining 810016
 全文: PDF (2585 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为探讨寒旱环境盐生植物根系对增强土体抗剪强度的贡献,本项研究以柴达木盆地尕斯库勒盐湖区及其周边地区作为试验区,选取区内海韭菜(Triglochin maritimum Linn.)、芦苇(Phragmites australis Trin.)、无脉苔草(Carex enervis C.A.Mey.)、赖草(Leymus secalinus Tzvel.)、洽草(Koeleria cristata(L.)Pers.)5种优势盐生草本植物作为供试种,通过野外采集根-土复合体原状和不含根系的素土试样,且由表层向下层分层制取直剪原状试样方法,分别进行复合体和素土试样的室内直剪试验,分析不同取样位置深度处的含水量、垂直压力、根系分布形态、含根量以及根面积比5种因素对根-土复合体抗剪强度的影响。试验结果表明:随着取样深度位置处土体含水量增加,复合体黏聚力c值呈逐渐降低变化规律;5种植物根-土复合体和素土试样垂直压力和抗剪强度之间符合莫尔-库仑准则,5种植物根系起到浅层加筋作用且抗剪强度增幅为3.26%~57.18%。随着海韭菜和芦苇根-土复合体试样的根面积比(RAR)及无脉苔草、赖草和洽草根-土复合体试样含根量的减小,复合体试样黏聚力c值呈降低趋势;根面积比对海韭菜和芦苇根-土复合体黏聚力c值的影响程度,以及含根量对无脉苔草、赖草和洽草根-土复合体黏聚力c值的影响程度均相对大于含水量。5种植物根-土复合体在不同深度处黏聚力c值均显著高于素土黏聚力c值,其增强幅度为9.61%~182.56%,相比较而言,内摩擦角φ值变化相对较小。区内海韭菜根系对土体抗剪强度的增强作用相对较为显著,其次为芦苇、无脉苔草、赖草、洽草。该项研究结果对于进一步评价盐生植物根系增强土体强度作用,以及与试验区地质条件相类似的地区采用盐生植物有效防止水土流失、浅层滑坡等地质灾害具有实际指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词寒旱环境   盐生植物   根-土复合体   黏聚力   内摩擦角   抗剪强度     
Abstract: This paper aims to study the contribution of halophytes roots in increasing shear strength of soil in cold and arid environments. The Gasikule Salt Lakes and the surrounding areas in the Qaidam Basin are selected as the test area. Five predominant halophytes(Triglochin maritimum Linn., Phragmites australis Trin.,Carex enervis C.A.Mey.,Leymus secalinus Tzvel.,Koeleria cristata(L.)Pers.) are selected as test species. Direct shear tests are carried out to the samples of soil without roots and root-soil composite system collected in-situ by the method of digging soil from shallow layers to the deep layers of the ground, where layer-by-layer excavation is applied to investigate the effect of moisture content, vertical pressure, the pattern of roots arrangement, root content and root area ratio on shear strength of soil. Results exhibit the following results. With the increasing of soil moisture content, the cohesion force decline. The relationship between vertical pressure and shear strength satisfies Mohr-Coulomb law. The roots play a role in soil reinforcement in shallow layer. The increment amplitude of shear strength is 3.26%~57.18%.With decreasing in root area ratio(RAR)for T.maritimum Linn. and P.australis Trin. and the decreasing in root content for C.enervis C.A.Mey.,L.secalinus Tzvel. and K.cristata(L.)Pers.,the cohesion force of root-soil composite system decreases. Root area ratio(RAR)has a relatively larger effect on cohesion force of T.maritimum Linn. and P.australis Trin. root-soil composite system than soil moisture content. The effect of root content on cohesion force of C.enervis C.A.Mey.,L.secalinus Tzvel. and K.cristata(L.)Pers. root-soil composite system is bigger than soil moisture content, too. The cohesion force of root-soil composite system at different depths is significantly larger than that of non-rooted soil, with the corresponding increment amplitude ranging from 9.61%~182.56%. In contrast, the variation in internal friction angle is relatively small. Reinforcement effect of shear strength for T.maritimum Linn.roots is relatively significant, followed by P.australis Trin.,C.enervis C.A.Mey.,L.secalinus Tzvel. and K.cristata(L.)Pers. The conclusion plays a role in assessing the reinforcement of roots in increasing shear strength and has an instructive meaning in implementing measures in soil erosion prevention and shallow landslide and other such geological hazards by halophytes in testing site and other regions with similar geological conditions.
Key wordsCold and arid environments   Halophytes   Root-soil composite system   Cohesion force   Internal friction angle   Shear strength   
收稿日期: 2016-10-08;
基金资助:

国家自然科学基金项目(41572306,41162010),中国科学院“百人计划”项目(Y110091025),青海省自然科学基金项目(2014-ZJ-906)资助

通讯作者: 胡夏嵩(1965-),男,博士,教授,主要从事环境岩土工程与地质工程等方面的教学与研究工作.Email:huxiasong@sina.com     E-mail: huxiasong@sina.com
作者简介: 祁兆鑫(1993-),男,硕士生,主要研究方向为环境岩土工程与工程地质.Email:qizhaoxin14@sina.com
引用本文:   
. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J]. 工程地质学报, 2017, 25(6): 1438-1448.
. EXPERIMENTAL RESEARCH ON FACTORS AFFECTING SHEAR STRENGTH OF HALOPHYTE ROOT-SOIL COMPOSITE SYSTEMS IN COLD AND ARID ENVIRONMENTS[J]. Journal of Engineering Geology, 2017, 25(6): 1438-1448.
 
[1] Bischetti G B,Chiaradia E A,Simonato T,et al. 2005. Root strength and root area ratio of forest species in Lombardy(Northern Italy)[J]. Plant and Soil, 278 (1~2):11~22.
[2] Fan C C,Su C F. 2008. Role of roots in the shear strength of root-reinforced soils with high moisture content[J]. Ecological Engineering, 33 (2):157~166.
[3] Ge R L,Liu Y Q,Zou Z Y,et al. 2015. Principal component analysis about the main mechanical factors of soil-reinforcement by roots[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 36 (6):39~47.
[4] Hu X T,Yu D M,Fu J T,et al. 2015. An experimental research on shear strength of halophytes root-soil complexes in salt lake area of Qaidam Basin[J]. Journal of Glaciology and Geocryology, 37 (6):1579~1590.
[5] Huang L. 2007. Salt lake evolution and paleo climatic fluctuations in the Qaidam Basin[M]. Beijing:Sciences Press.
[6] Li Y Z,Fu J T,Yu D M,et al. 2015. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanical and Engineering, 34 (7):1370~1383.
[7] Liu Y L,Liu X L,Fu X,et al. 2016. Experimental study on influence of plant roots to shear strength of low liquid limit silty clay at shallow depth of slope[J]. Journal of Engineering Geology, 24 (3):384~390.
[8] Lü C J,Chen L H,Chen W G,et al. 2016. Study on shear performance of soil-root composite[J]. Journal of Irrigation and Drainage, 35 (3):13~19.
[9] Mattia C,Bischetti G B,Gentile F. 2005. Biotechnical characteristics of root systems of typical Mediterranean species[J]. Plant and Soil, 278 (1~2):23~32.
[10] Preti F,Dani A,Laio F. 2010. Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes[J]. Ecological Engineering, 36 (3):305~316.
[11] Tian J,Cao B,Ji J N,et al. 2014. Biomechanical characteristics of root systems of Hedysarum scoparium and Salix psammophila[J]. Transactions of the Chinese Society of Agricultural Engineering, 30 (23):192~198.
[12] Wang L. 2011. Experimental study on the mechanism of the vegetation roots'soil-reinforcement mechanics[D]. Nanjing:Nanjing Forestry University.
[13] Yan J H,Zhou G Y,Shen W J. 2000. Grey correlation analysis of the effect of vegetation status on surface runoff coefficient of forest ecosystems[J]. Chinese Journal of Applied and Environmental Biology, 6 (3):197~200.
[14] Yang Y C,Mo Y J,Wang Z F,et al. 1996. Experimental study on anti-water erosion and shear strength of soil-root composite[J]. Journal of China Agriculture University, 1 (2):31~38.
[15] Ye C Y. 2013. Distribution and enrichment mechanism of uranium in brine and sediment of Gasikule salt lakes[D]. Beijing:Beijing Research Institute of Uranium Geology.
[16] Zhang C B,Chen L H,Liu Y P,et al. 2010. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering, 36 (1):19~26.
[17] Zhang X M,Wang Y J,Xia Y P,et al. 2007. Grey relational analysis and evaluation on anti shear strength of the undisturbed soil of typical vegetations in Jinyun Mountain in Chongqing City[J]. Research of Soil and Water Conservation, 14 (2):145~147.
[18] Zhao C G,Bai B,Wang Y X. 2004. Fundamentals of soil mechanics[M]. Beijing:Tsinghua University Press.
[19] 黄麒. 2007. 柴达木盆地盐湖演化与古气候波动[M]. 北京:科学出版社.
[20] 王磊. 2011. 植被根系固土力学机理试验研究[D]. 南京:南京林业大学.
[21] 叶传永. 2013. 尕斯库勒盐湖卤水与沉积物中铀的分布及富集机理[D]. 北京:核工业北京地质研究院.
[22] 赵成刚,白冰,王云霞. 2004. 土力学原理[M]. 北京:清华大学出版社.
[1] 白健忠, 李萍, 李晓猛, 李同录. 泾阳黄土饱和有效抗剪强度参数研究[J]. 工程地质学报, 2017, 25(s1): 178-182.
[2] 刘朝安, 贾宁, 孟庆辉. T型触探矩形截面探头特性研究[J]. 工程地质学报, 2017, 25(s1): 440-444.
[3] 蒋树, 王义锋, 唐川, 潘洪月, 王坤. 金沙江下游金坪子Ⅱ区低速滑坡活动机理初探[J]. 工程地质学报, 2017, 25(6): 1547-1556.
[4] 魏继红, 王武超, 杨圆圆, 朱峰, 范昊天. 重复剪切作用下充填物对结构面力学性质的影响[J]. 工程地质学报, 2017, 25(6): 1482-1490.
[5] 祁昊, 冯文凯, 陈建峰, 白慧林, 周强, 郭小鹏. 四川理县桃坪冰水堆积物非饱和强度特性[J]. 工程地质学报, 2017, 25(5): 1357-1363.
[6] 陈学军, 周兴, 宋宇, 黄耀意. 淋滤条件下Zn2+污染对红黏土强度损伤特征试验研究[J]. 工程地质学报, 2017, 25(5): 1264-1269.
[7] 陈学军, 胡舒伟, 黄耀意, 白汉营. 纳米碳酸钙影响下红黏土强度特性试验研究[J]. 工程地质学报, 2017, 25(5): 1293-1298.
[8] 刘顺凯, 胡伟, 邹贵华, 向晖. 海南环岛海砂物理力学性质对比研究[J]. 工程地质学报, 2017, 25(3): 723-730.
[9] 徐永福. 生活垃圾焚烧炉渣在饱和状态下的强度特性[J]. 工程地质学报, 2017, 25(2): 277-283.
[10] 刘昌义, 胡夏嵩, 赵玉娇, 窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究[J]. 工程地质学报, 2017, 25(1): 1-10.
[11] 沈位刚, 赵涛, 戴峰, 王塞玉. 基于离散元方法的落石碰撞破碎研究[J]. 工程地质学报, 2016, 24(s1): 1047-1053.
[12] 夏涵, 蔡国军, 刘松玉. 全流触探贯入技术在海洋岩土工程中的应用研究综述[J]. 工程地质学报, 2016, 24(s1): 192-197.
[13] 刘朝安, 贾宁, 孟庆辉, 王洪播, 李振华. 椭圆形截面T型触探贯入阻力研究[J]. 工程地质学报, 2016, 24(s1): 214-220.
[14] 孟颂颂, 李德营, 李仕波, 汪洋. 不同前期固结压力下粉砂类滑带土抗剪强度环剪试验研究[J]. 工程地质学报, 2016, 24(s1): 1355-1361.
[15] 渠孟飞, 谢强, 李朝阳, 贺建军. 基于数据挖掘技术的滑带土抗剪强度预测[J]. 工程地质学报, 2016, 24(6): 1103-1109.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn