工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1449-1454    DOI: 10.13544/j.cnki.jeg.2017.06.007
工程地质力学 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
饱水条件下千枚岩软化效应试验分析
赵建军1, 解明礼1, 李涛1, 谭盛宇1,2, 巨能攀1, 步凡1
1. 地质灾害防治与地质环境保护国家重点实验室(成都理工大学) 成都 610059;
2. 四川省交通运输厅公路规划勘察设计研究院 成都 610041
SOFTENING EFFECT OF PHYLLITE WITH WATER SATURATION
ZHAO Jianjun1, XIE Mingli1, LI Tao1, TAN Shengyu1,2, JU Nengpan1, BU Fan1
1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology), Chengdu 610059;
2. Sichuan Provincial Transport Department Highway Planning Survey, Design and Research Institute, Chengdu 610041
 全文: PDF (2470 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 水岩作用是造成水库岸边坡岩体强度劣化的主要因素,尤其对于千枚岩这类特殊性岩体,遇水时强度劣化现象尤为明显。本文以某边坡千枚岩为研究对象,设计了在不同饱水条件下的岩石常规三轴压缩试验,并综合分析试验结果随饱水时间变化规律。研究结果表明:千枚岩与水作用反应强烈,前60d岩石力学参数随饱水时间增加呈近线性降低,至70d逐渐趋于稳定,岩石变形逐渐由弹性变形为主演变为塑性变形为主;各参数劣化规律具有明显的时效性与非均匀性,随饱水时间增长,总体衰减幅度呈先增加后减小,最终趋于平稳的趋势;根据破裂面的剪切破坏模式,得出岩石饱水是一种从微观到宏观的累计损伤过程。该研究成果对于研究水库岸边坡岩体力学性质变化规律具有一定的参考价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词千枚岩   水岩作用   三轴压缩试验   剪切破坏   力学参数变化     
Abstract: Water-rock interaction is a main factor that weakens the rock mass strength of reservoir bank slope. Weaken strength for phyllite is especially obvious physical reacting with water. Taking the phyllite of a slope as example, this paper designs conventional triaxial compression tests under different saturated conditions and studies strength change law with saturated time. Results are obtained as follows:(1)the interaction between phyllite and water is strong. The rock strength parameters gradually decrease with the increase of water saturation time. For the first 60 days, the rock mass parameters linearly decrease with saturated time and tend to stable at 70 days. The mechanism gradually evolves elastic deformation to plastic deformation.(2)Weaken law of parameters shows obvious heterogeneity. The weaken degree is first large and then small, and finally tends to be stable.(3)According to shear failure mode, rock saturation is a cumulative process that from micro to macro. To sum up, the results of this paper have a certain reference value for studying the change law of mechanical property for rock mass of reservoir bank slopes.
Key wordsPhyllite   Water-rock Interaction   Triaxial compression test   Shear failure   Changing of mechanical parameters   
收稿日期: 2016-11-15;
基金资助:

国家科技支撑计划(2015BAK09B01),国家创新研究群体科学基金(41521002),国家重点基础研究计划(973)项目(2013CB733202)资助

作者简介: 赵建军(1980-),男,博士,教授,主要从事工程地质教学与科研工作.Email:zhaojianjun07@cdut.cn
引用本文:   
. 饱水条件下千枚岩软化效应试验分析[J]. 工程地质学报, 2017, 25(6): 1449-1454.
. SOFTENING EFFECT OF PHYLLITE WITH WATER SATURATION[J]. Journal of Engineering Geology, 2017, 25(6): 1449-1454.
 
[1] Nur A, Simmons G. 1969. The effect of saturation on velocity in low porosity rock[J]. Earth and Planetary Science Letters, 7 (2):183~193.
[2] Deng H F,Li J L,Zhu M,et al. 2012. Experimental research on strength deterioration rules of sandstone under "saturation-air dry" circulation function[J]. Rock and Soil Mechanics, 33 (11):3306~3312.
[3] Deng H F,Xiao Z Y,Li J L,et al. 2015. Deteriorating change rule test research of damage sandstone strength under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S1):2690~2698.
[4] Garzon E,Sanchez-Soto P J,Garzon E R, et al. 2010. Physical and geotechnical properties of clay phyllites[J]. Applied Clay Science, 48 (3):307~318.
[5] Feng X T,Ding W X. 2007. Experimental study of limestone microfracturing under a coupled stress, fluid flow and changing chemical environment[J]. International Journal of Rock Mechanics and Mining Sciences, 44 (3):437~448.
[6] He M C. 2014. Latest progress of soft rock mechanics and engineering in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 6 (3):165~179.
[7] He M C,Jing H H,Sun X M. 2002. Engineering mechanics of soft rocks[M]. Beijing:Science Press.
[8] Peak L. 1977. Stress corrosion and crack propagation in Sioux Quartzite[J]. Rev. Geophys. Space Physics, 15:77~104.
[9] Liu C W,Lu S L. 2000. Research on mechanism of mudstone degradation and softening in water[J]. Rock and Soil Mechanics, 21 (1):28~31.
[10] Liu Z,Zhou C Y,Zhu F X,et al. 2011. Critical criterion for microstructure evolution of soft rocks in softening process[J]. Rock and Soil Mechanics, 32 (3):661~666.
[11] Miao S J,Cai M F,Ji D,et al. 2016. Damage effect of granite's mechanical properties and parameters under the action of acidic solutions[J]. Journal of China Coal Society, 41 (4):829~835.
[12] Miao S J,Cai M F,Ji D,et al. 2016. Aging features and mechanism of Granite's damage under the action of acidic chemical solutions[J]. Journal of China Coal Society, 41 (5):1137~1144.
[13] Okubo S,Fukui K,Hashiba K. 2010. Long-term creep of water saturated tuff under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 47 (5):839~844.
[14] Sun P,Yin Y P,Wu S R,et al. 2010. Experimental study of microstruture and mechanical properties of rocks from Donghekou landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (S1):2872~2879.
[15] Tang L S,Wang S J. 2002. Analysis on mechanism and quantitative methods of chemical damage in water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (3):314~319.
[16] Taron J,Elsworth D,Min K B. 2009. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media[J]. International Journal of Rock Mechanics and Mining Sciences, 46 (5):842~854.
[17] Wang L,Yang C H. 2006. Studies on different initial water-saturated red sandstones different danaged extensiou under condition of frost caol[J]. Rock and Soil Mechanics, 27 (10):1772~1776.
[18] Yang C H,Mao H J,Wang X C,et al. 2006. Study on variation on microstructure and mechanical properties of water-weakening states[J]. Rock and Soil Mechanics, 27 (12):2090~2098.
[19] White J M,Mazurkiewicz M. 1989. Effect of moisture content on mechanical properties of Nemo coal[J]. Moberly, Missouri U.S.A Mining Science and Technology, 23 (9):181~185.
[20] Zheng D,Ju N P. 2011. Scanning electronic microscope tests for rock micro-rupture mechanism and fracture characteristic of phyllite[J]. Journal of Engineering Geology, 19 (3):317~322.
[21] Zhou C Y,Deng Y M,Tan X S,et al. 2005. Experimental research on the softening of mechanical properties of saturated soft rocks and application[J]. Chinese Journal of Rock Mechanice and Engineering, 24 (1):33~38.
[22] Zhou C Y,Li W K,Xiang Z M,et al. 2015. Analysis of mesoscopic frictional contacts in soft rocks under water-stress interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 36 (9):2458~2466.
[23] 何满潮,景海河,孙晓明. 2002. 软岩工程力学[M]. 北京:科学出版社.
[1] 蒲超, 孟陆波, 李天斌. 三轴压缩条件下千枚岩破裂与能量特征研究[J]. 工程地质学报, 2017, 25(2): 359-366.
[2] 易成城, 刘镇, 周翠英. 水-应力作用下软岩破坏面倾角的概率分析[J]. 工程地质学报, 2016, 24(6): 1262-1268.
[3] 李锦. 水平地震力作用下顺倾结构面对岩质边坡破坏影响分析[J]. 工程地质学报, 2015, 23(3): 448-453.
[4] 张家铭, 刘宇航, 罗昌宏, 申思然. 巴东组紫红色泥岩三轴压缩试验及本构模型研究[J]. 工程地质学报, 2013, 21(1): 138-142.
[5] 叶剑红, JENG Dongsheng, CHAN AHC. 非饱和砂质海床在复合防波堤下固结的数值研究[J]. 工程地质学报, 2012, 20(4): 639-648.
[6] 郑达, 巨能攀. 千枚岩岩石微观破裂机理与断裂特征研究[J]. 工程地质学报, 2011, 19(3): 317-322.
[7] 钱海涛 谭朝爽 孙 强. 基于破坏概率的岩土试件剪切破坏角分析[J]. 工程地质学报, 2010, 18(2): 211-.
[8] 谭儒蛟 杨旭朝 胡瑞林 刘国权. 大型反倾库岸岩体变形过程及破坏机制数值模拟[J]. 工程地质学报, 2009, 17(4): 476-482.
[9] 张永安, 李峰, 陈军. 红层泥岩水岩作用特征研究[J]. 工程地质学报, 2008, 16(1): 22-26.
[10] 朱美琼, 吴吉利. 珠江三角洲软土不固结不排水三轴剪切试验影响因素的几点体会[J]. 工程地质学报, 2006, (S1): 73-75.
[11] 廖秋林, 李晓, 李守定, 侯哲生. 水岩作用对川藏公路102滑坡形成与演化的影响[J]. 工程地质学报, 2003, 11(4): 390-395.
[12] 宋建波, 于远忠. 剪切破坏模式下确定均质岩基极限承载力的两种方法[J]. 工程地质学报, 2001, 9(3): 317-320.
[13] 冯启言, 韩宝平, 隋旺华. 鲁西南地区红层软岩水岩作用特征与工程应用[J]. 工程地质学报, 1999, 7(3): 266-271.
[14] 王思敬, 马凤山, 杜永廉. 水库地区的水岩作用及其地质环境影响[J]. 工程地质学报, 1996, 4(3): 1-9.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn