首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1455-1464    DOI: 10.13544/j.cnki.jeg.2017.06.008
工程地质力学 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
吴静红1, 施斌1, 曹鼎峰1, 姜洪涛2, 王雪帆1, 尹建华1
1. 南京大学地球科学与工程学院 南京 210023;
2. 南京大学地理与海洋科学学院 南京 210023
WU Jinghong1, SHI Bin1, CAO Dingfeng1, JIANG Hongtao2, WANG Xuefan1, YIN Jianhua1
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023;
2. School of Geographic and Oceanographic Science, Nanjing University, Nanjing 210023
 全文: PDF (4704 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 黏土层和砂土层交替变化的多层土体在强烈开采地下水作用下极易产生压密固结而引发地面沉降灾害。本文针对含水层释水引起地面沉降问题,研制了地面沉降试验装置,进行了排灌水条件下含水层系统的沉降及回弹试验。采用分布式光纤感测技术对土体内部应变分布及含水率变化进行耦合监测,并分析了各分层对水位变化的响应特征。结果表明:黏土层和砂土层均表现出了排水压缩和灌水回弹特点,黏土层变形较砂土层明显。各层变形与含水率变化具有良好的对应关系,表现为砂土层变形和含水率变化基本同步,而黏土层变形略微滞后于含水率变化。黏性土压缩曲线具有明显的分段特征,排水时当含水率低于液限后迅速减小,黏土层压缩速率明显加快;回灌时当含水率高于液限后,回弹速率明显加快。试验结果对研究地面沉降机理、评价地面沉降潜力及地下水利用具有重要意义。
E-mail Alert
关键词地面沉降   土体应变   分布式光纤监测   水土耦合     
Abstract: Under the effect of intense exploitation of groundwater, the multi-layer soil of clayey soil and sandy soil is susceptible to be compressed, which causes the land subsidence disaster. To better understand the mechanism of land subsidence caused by groundwater withdrawal, a small-scale sand-clay interbred model box is built to carry out the consolidation and rebound tests. Distributed fiber optical sensing(DFOS)technologies are introduced for coupling monitoring of soil strain and water content to analyze the response characteristics of each layer to water level changes. The results indicate that soil layers are compressed during drainage while rebound during recharge. In addition, the deformation of clay layer is obvious than that of sand layer. The deformation of sand layer is synchronous with water content changes, while that of clay layer is slightly lagging behind the water content changes due to its lower coefficient of permeability. The segmented compression curve of clay layer shows that water content rapidly decreases when it is lower than its liquid limit, meanwhile the clay layer compression rate obviously accelerates during drainage. When water content is higher than that of its liquid limit during recharge, rebound rate significantly increases. The test results are of great significance to study the mechanism of land subsidence as well as to evaluate the compression potential of soil layers.
Key wordsLand subsidence   Soil strain   Distributed fiber optical sensing(DFOS)   Soil and water coupling   
收稿日期: 2016-12-01;


通讯作者: 姜洪涛(1962-),女,博士,教授,主要从事环境地质和自然地理研究.Email:jianghongtao@nju.edu.cn     E-mail: jianghongtao@nju.edu.cn
作者简介: 吴静红(1989-),女,博士生,主要从事城市环境岩土工程研究.Email:wjhsese@sina.com
. 基于DFOS的排灌水条件下土体变形响应模型试验研究[J]. 工程地质学报, 2017, 25(6): 1455-1464.
[1] Cao D F,Shi B,Zhu H H,et al. 2015. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7 (6):700~707.
[2] Cao D F,Shi B,Zhu H H,et al. 2016. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content[J]. Journal of Rock Mechanics and Geotechnical Engineering, 8 (2):212~217.
[3] Chen S,Chen Z Y,Chen J, et al. 2014. Mechanics of aquitard drainage by aquifer-system compaction and its implications for water-management in the North China Plain[J]. Journal of Earth Science, 25 (3):598~604.
[4] Ding G P,Hu C,Chen H L,et al. 2012. Permeability characteristics of clay in land subsidence center at Hengshui, Hebei, China[J]. Journal of Engineering Geology, 20 (1):82~87.
[5] Ding Y,Wang P,Li P F,et al. 2014. Monitoring technology of deformation of continuous concrete wall based on BOTDA[J]. Chinese Journal of Geotechnical Engineering, 36 (S2):500~503.
[6] Fukue M,Minato T,Horibe H,et al. 1999. The micro-structures of clay given by resistivity measurements[J]. Engineering Geology, 54 (1-2):43~53.
[7] Gong S L. 2002. The microscopic characteristics of Shanghai soft clay and its effect on soil mass deformation and land subsidence[J]. Journal of Engineering Geology, 10 (4):378~384.
[8] Horiguchi T, Tateda M. 1989. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using brillouin interaction:theory[J]. Journal of Lightwave Technology, 7 (8):1170~1176.
[9] Hung W C,Hwang C,Chang C P,et al. 2010. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors:Yunlin, the southern Choushui River Alluvial Fan[J]. Environmental Earth Sciences, 59 (7):1535~1548.
[10] Kersey A,Davis M A,Patrick H J,et al. 1997. Fiber grating sensors[J]. Journal of Lightwave Technology, 15 (8):1442~1463.
[11] Kishida K, Li C H. 2005. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system[J]//Structural Health Monitoring and Intelligent Infrastructure:471~477.
[12] Kitaro, Murayama. 1969. Land Subsidence Model Test[C]//Selected Papers of Foreign Land Subsidence:83~101.
[13] Kunisue S, Kokubo T. 2010. In situ formation compaction monitoring in deep reservoirs using optical fibres[J]. IAHS-AISH Publication:368~370.
[14] Luo L H,Shao X,Lü X W,et al. 2014. The microscopic structure and compression-deformation characteristics of Tianjin clay[J]. Shanghai Land & Resources,(4):40~43.
[15] Mousavi S M,Naggr M H, and Shamsai S. 2000. Application of GPS to evaluate land subsidence in Iran[C]//Proceeding of the Sixth International Symposium on Land Subsidence. Ravenna, Italy:107~112.
[16] Pacheco-Martínez J,Hernandez-Marín M,Burbey T J,et al. 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México[J]. Engineering Geology, 164 (18):172~186.
[17] Phien-Wej N,Giao P H,Nutalaya P. 2006. Land subsidence in Bangkok, Thailand[J]. Engineering Geology, 82 (4):187~201.
[18] Poland J F, Davis G H. 1969. Land subsidence due to withdrwal of fluids[J]. Reviews in Engineering Geology:187~270.
[19] Ramnarong, V. 1989. Subsurface injection of storm water runoff into an underground storage of bangkok[C]//Bangkok Land Subsidence-What Is Next?,Artificial Recharge of Ground Water. ASCE:22~23.
[20] Riley N, Stewartson K. 1969. Trailing Edge Flows[J]. Journal of Fluid Mechanics, 39:193~207.
[21] Sato H P,Abe K,Ootaki O. 2003. GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan[J]. Engineering Geology, 67 (3-4):379~390.
[22] Sayde C,Gregory C,Gilrodriguez M,et al. 2010. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 46 (6):2840~2849.
[23] Song Z P,Shi B,Juang H,et al. 2016. Soil strain-field and stability analysis of cut slope based on optical fiber measurement[J]. Bulletin of Engineering Geology & the Environment:1~10.
[24] Tosi L,Teatini P,Carbognin L,et al. 2007. A new project to monitor land subsidence in the northern Venice coastland(Italy)[J]. Environmental Geology, 52 (5):889~898.
[25] Tung H,Hu J C. 2012. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR[J]. Tectonophysics, 578:126~135.
[26] Wang B J,Li K,Shi B,et al. 2009. Test on Application of Distributed Fiber Optic Sensing Technique into Soil Slope Monitoring[J]. Landslides, 6 (1):61~68.
[27] Wang C L,Wang F. 2007. Discussion on the controlling of artificial recharge of underground water to the land subsidence[J]. Shanxi Architecture, 33 (33):142~143.
[28] Wang G Y,You G,Shi B,et al. 2009. Long-term land subsidence and strata compression in Changzhou, China[J]. Engineering Geology, 104 (1):109~118.
[29] Wang G Y,Yu J,Wu S L,et al. 2009. Land subsidence and compression of soil layers in changzhou area[J]. Geology and Exploration, 45 (5):612~620.
[30] Weiss J D. 2003. Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier[J]. Journal of the Air & Waste Management Association, 53 (9):1130~1148.
[31] Wu Q,Xie H L,Zhao Z M,et al. 2006. Study on deformation mechanics of aquitard[J]. Journal of University of Science and Technology Beijing, 28 (3):207~210.
[32] Wu J H,Jiang H T,Su J W,et al. 2015. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 5 (5):587~597.
[33] Wu J H,Jiang H T,Su J W,et al. 2016. DFOS-based monitoring on quaternary sediments deformation and land subsidence in Suzhou, China[J]. Journal of Engineering Geology, 24 (1):56~63.
[34] Xie H L,Wang X D,Hu Y Z,et al. 2009. Deformation model suggestion of deep-dept aquitard[J]. Geological Survey and Research, 32 (4):306~309.
[35] Xu H Y,Zhou Z F,Gao Z Q. 2011. Experimental research of hysteresis effect of land subsidence caused by water releasing[J]. Chinese Journal of Rock Mechanics and Engineering, 30 (S2):3595~3601.
[36] Zhang S Y,Li T,Xia Y. 2008. Study on urban area subsidence monitoring based on InSAR technique[J]. Geomatics and Information Science of Wuhan University, 33 (8):850~853.
[37] Zhang Y,Xue X Q,Wu J C,et al. 2006a. Characteristics and parameters of sand strata deformation due to groundwater pumping in Shanghai[J]. Journal of Hydraulic Engineering, 37 (5):560~566.
[38] Zhang Y,Xue Y Q,Ye S J,et al. 2006b. Analysis of deformation of sand strata and land subsidence based on modes of groundwater level changes in Shanghai City[J]. The Chinese Journal of Geological Hazard and Control, 17 (3):103~109.
[39] Zhu H H,Shi B,Jie Z,et al. 2014. Distributed fiber optic monitoring and stability analysis of a model slope under surcharge loading[J]. Journal of Mountain Science, 11 (4):979~989.
[40] Zhu Y Q,Zhu H H,Sun Y J,et al. 2014. Model experiment study of pipe pile driving into soil using FBG-BOTDA sensing monitoring technology[J]. Rock and Soil Mechanics, 35 (S2):695~702.
[1] 罗勇, 胡瑞林, 叶超, 雷坤超, 田芳, 崔文君, 王荣, 赵龙, 王新惠. 北京市地面沉降单元划分方法探讨[J]. 工程地质学报, 2017, 25(Z1): 95-106.
[2] 罗勇, 胡瑞林, 叶超, 雷坤超, 田芳, 崔文君, 王荣, 赵龙, 王新惠. 北京市地面沉降单元划分方法探讨[J]. 工程地质学报, 2017, 25(s2): 41-52.
[3] 陶虹, 郑苗苗, 陶福平, 范立民, 李文莉. 基于长期监测大数据的地面沉降成因机理研究[J]. 工程地质学报, 2017, 25(s1): 332-336.
[4] 李程. 基于加速度传感器数据融合的隧道施工地面沉降监测技术研究[J]. 工程地质学报, 2017, 25(s1): 60-67.
[5] 索文斌, 刘春, 施斌, 张晓宇. 深基坑PCMW工法开挖过程离散元数值模拟分析[J]. 工程地质学报, 2017, 25(4): 920-925.
[6] 马佳玉, 姜洪涛, 卢毅, 顾凯, 施斌. 基于MIP的弱透水层压缩潜力评价初探[J]. 工程地质学报, 2016, 24(s1): 174-179.
[7] 王雪帆, 吴静红, 汪义龙, 姜洪涛, 施斌. 降水及回灌过程中土体变形响应室内模型试验研究[J]. 工程地质学报, 2016, 24(s1): 1161-1167.
[8] 尹建华, 顾凯, 姜洪涛, 卢毅, 施斌. 无锡地面沉降区弱透水层SEM分析[J]. 工程地质学报, 2016, 24(s1): 1179-1183.
[9] 李曼, 葛大庆, 张玲, 刘斌, 郭小方, 王艳. 基于PSInSAR技术的唐山南部沿海地区地面沉降研究[J]. 工程地质学报, 2016, 24(4): 704-712.
[10] 吴静红, 姜洪涛, 苏晶文, 施斌. 基于DFOS的苏州第四纪沉积层变形及地面沉降监测分析[J]. 工程地质学报, 2016, 24(1): 56-63.
[11] 白林, 张延军, 郭亮亮, 张通. 岩石Biot系数对地层沉降量影响规律研究[J]. 工程地质学报, 2015, 23(s1): 278-283.
[12] 房浩. 地下水开采及建筑物荷载综合作用诱发的地面沉降对建设工程的影响评价研究[J]. 工程地质学报, 2015, 23(s1): 398-404.
[13] 李铎, 刘洋, 方晓峰. 唐山沿海地区地面沉降渗流固结耦合模拟研究[J]. 工程地质学报, 2015, 23(1): 105-110.
[14] 王利, 张勤, 范丽红, 赵红, 吴丹, 田婕, 李毓照. 北斗/GPS融合静态相对定位用于高精度地面沉降监测的试验与结果分析[J]. 工程地质学报, 2015, 23(1): 119-125.
[15] 王志荣, 李亚坤, 张利民, 陈玲霞. 薄层状盐岩地下储气库工程地质条件及可行性分析[J]. 工程地质学报, 2015, 23(1): 148-154.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn