工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1465-1473    DOI: 10.13544/j.cnki.jeg.2017.06.009
工程地质力学 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
高温下红黏土热导率的变化规律试验研究
徐云山1, 曾召田1,2, 吕海波1,3, 范理云1, 覃汉莲2
1. 桂林理工大学广西建筑新能源与节能重点实验室 桂林 541004;
2. 国土资源部岩溶生态系统与石漠化治理重点实验室 桂林 541004;
3. 广西大学土木建筑工程学院 南宁 530004
EXPERIMENTAL STUDY ON VARIATION OF THERMAL CONDUCTIVITY OF RED CLAY AT HIGH TEMPERATURE
XU Yunshan1, ZENG Zhaotian1,2, LÜ Haibo1,3, FAN Liyun1, QIN Hanlian2
1. Guilin University of Technology, Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin 541004;
2. Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Land and Resources, Guilin 541004;
3. College of Civil Engineering, Guangxi University, Nanning 530004
 全文: PDF (1944 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 目前国际上对高温下土壤热导率的试验和模型预测研究比较缺乏,通过KD2 Pro测试两种红黏土在较广温度范围(5~90℃)和含水率范围内的热导率,并选择IPCHT模型预测高温下体积含水率-热导率的变化规律。测试结果表明,两种红黏土的热导率对体积含水率的敏感程度与温度有关,且热导率均随温度的升高而增大,在90℃时热导率最高可达5℃的3~4倍。60~90℃范围内热导率随体积含水率的变化存在明显的临界含水率(对应土壤的塑性指数),但相同温度、体积含水率下,柳州红黏土中水汽潜热传输效应较桂林红黏土要明显。模型预测研究表明,除粉砂质黏壤土外,高温下IPCHT模型预测效果均不理想,经传质增强因子ξ修正后,柳州红黏土以及细砂的热导率预测值和实测值均相符得较好(RMSE<30%),但桂林红黏土的整体预测效果仍较差。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词红黏土   热导率   预测模型   温度效应     
Abstract: Currently, there is a lack of experimental study and model prediction of thermal conductivity of soil under high temperature around the world. Tests are conducted through KD2 Pro on two kinds of lateritic clay within a wide range of temperatures(5~90℃) and water contents. Meanwhile, the IPCHT model is chosen to predict the variation of the volumetric water content and thermal conductivity under high temperature. The results of test indicate that the sensitivity of the thermal conductivity on the two kinds of lateritic clay to the volumetric water content is related to the temperature. The thermal conductivity increases with the increase of temperature. The thermal conductivity under 90℃ is 3 or 4 times as high as that under 5℃. The change of thermal conductivity with volumetric water content has obvious critical water content under 60~90℃(correspond to the plasticity index of soil). However, the latent heat transfer effect of water vapor in the lateritic clay of Liuzhou is more obvious than that in the lateritic clay of Guilin under the same temperature and volumetric water content. The results of model fit show that the prediction results of IPCHT model are not ideal except for the silty clay loam, after modification of the mass transfer enhancement factor ξ. The simulated values of the thermal conductivity of lateritic clay in Liuzhou and fine sand are in good agreement with the measured values(RMSE<30%). However, the overall prediction effect of the lateritic clay in Guilin is still not ideal.
Key wordsLateritic clay   Thermal conductivity   Prediction model   Temperature effect   
收稿日期: 2016-12-09;
基金资助:

国家自然科学基金项目(41502284,51568014),国土资源部岩溶生态系统与石漠化治理重点实验室项目(KDL201603),桂林理工大学博士科研启动基金(2016254)资助

通讯作者: 曾召田(1981-),男,博士,副教授,主要从事环境岩土工程与地质工程等领域的研究工作.Email:zengzhaotian@163.com     E-mail: zengzhaotian@163.com
作者简介: 徐云山(1990-),男,硕士生,主要从事特殊土的岩土工程方面的研究.Email:xuyunshanfj@163.com
引用本文:   
. 高温下红黏土热导率的变化规律试验研究[J]. 工程地质学报, 2017, 25(6): 1465-1473.
. EXPERIMENTAL STUDY ON VARIATION OF THERMAL CONDUCTIVITY OF RED CLAY AT HIGH TEMPERATURE[J]. Journal of Engineering Geology, 2017, 25(6): 1465-1473.
 
[1] Campbell G S,Jungbauer J D,Bidlake W R,et al. 1994. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Science, 158 (5):307~313.
[2] Cass A,Campbell G S,Jones T L. 1984. Enhancement of thermal water vapor diffusion in soil[J]. Soil Science Society of America Journal, 48:25~32.
[3] Chang H S, Liu L,Ji C S,et al. 2015. Soil-water characteristic curves of two kinds of lateritic clay from Guilin and Liuzhou[J]. Journal of Guilin University of Technology, 35 (4):855~859.
[4] Corasaniti S, Gori F. 2002. Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J]. Journal of Heat Transfer, 124 (6):1001~1008.
[5] De Vries D A 1963. Thermal properties of soils[M]. Amsterdam:W R North-Holland Publishing Company.
[6] Hiraiwa Y,Kasubuchi T. 2010. Temperature dependence of thermal conductivity of soils over a wide range of temperature(5~75℃)[J]. European Journal of Soil Science, 51 (2):211~218.
[7] Leong W H,Tarnawski V R,Gori F,et al. 2005. Inter-particle contact heat transfer models:an extension to soils at elevated temperatures[J]. International Journal of Energy Research, 29 (2):131~144.
[8] Liu C H,Zhou D,Wu H. 2011. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 33 (12):1877~1886.
[9] Lu S,Ren T S. 2009. Model for predicting soil thermal conductivity at various temperatures[J]. Transactions of the CSAE, 25 (7):13~18.
[10] Philip J R, Vries D A D. 1957. Moisture movement in porous materials under temperature gradients[J]. Eos Transactions American Geophysical Union, 38 (2):222~232.
[11] Smith G S. 1956. Intermittent ground grids for heat pumps[J]. Heating, Piping & Air Conditioning, 18 (8):127~133.
[12] Su T M,Liu T,Li X Z,et al. 2006. Test and analysis of thermal properties of soil in Nanjing district[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (6):1278~1283.
[13] Tang A M,Cui Y J,Le T T. 2008. A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science, 41 (3):181~189.
[14] Tarnawski V R,Gori F,Wagner B,et al. 2000. Modelling approaches to predicting thermal conductivity of soils at high temperatures[J]. International Journal of Energy Research, 24 (5):403~423.
[15] Tarnawski V R,Gori F. 2002a. Enhancement of the cubic cell soil thermal conductivity model[J]. International Journal of Energy Research, 26 (2):143~157.
[16] Tarnawski V R,Leong W H,Gori F,et al. 2002b. Inter-particle contact heat transfer in soil systems at moderate temperatures[J]. International Journal of Energy Research, 26 (15):1345~1358.
[17] Wang H J,Zhao Z W, Qi C Y. 2013. Experimental study of apparent thermal conductivity of moisture soil under high temperature[J]. Acta Energiae Solaris Sinica, 34 (8):1385~1390.
[18] Wang T H,Liu Z C,Lu J. 2007. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics. 28 (4):655~658.
[19] Xiao L,Li X Z,Zhao X B,et al. 2008. Laroratory on influences of moisture content and porosity on thermal conductivity of soils[J]. Journal of PLA University of Science and Technology, 9 (3):241~247.
[20] Zhang Y J,Yu Z W,Huang R, et al. 2009. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 31 (2):213~217.
[21] Zhu L J, Li J Y. 2004. Weathering and pedogenesis of carbonatite and its environmental effect[M]. Beijing:Geological Publishing House.
[22] 朱立军,李景阳. 2004. 碳酸盐岩风化成土作用及其环境效应[M]. 北京:地质出版社.
[1] 陈学军, 陈李洁, 宋宇, 王贺, 周兴, 李佳明. Al2O3改良红黏土的力学试验研究[J]. 工程地质学报, 2017, 25(s1): 230-234.
[2] 陈逸方, 刘之葵. 不同含水率条件下赤泥掺量对红黏土力学性质及结构的影响[J]. 工程地质学报, 2017, 25(s1): 194-199.
[3] 陈学军, 李佳明, 宋宇, 杨越, 陈李洁. 纳米膨润土对桂林红黏土力学性质的影响[J]. 工程地质学报, 2017, 25(s1): 207-212.
[4] 陈鸿宾, 黄翔, 陈学军, 周兴, 胡舒伟. 硬化性红黏土应力-应变曲线拟合分析[J]. 工程地质学报, 2017, 25(s1): 225-229.
[5] 沙桢晖, 梁维云, 郑恒, 颜荣涛, 韦昌富. 大气环境作用下红黏土边坡湿热特性[J]. 工程地质学报, 2017, 25(s1): 377-383.
[6] 陈学军, 周兴, 宋宇, 黄耀意. 淋滤条件下Zn2+污染对红黏土强度损伤特征试验研究[J]. 工程地质学报, 2017, 25(5): 1264-1269.
[7] 陈学军, 胡舒伟, 黄耀意, 白汉营. 纳米碳酸钙影响下红黏土强度特性试验研究[J]. 工程地质学报, 2017, 25(5): 1293-1298.
[8] 瞿帅, 刘维正, 聂志红. 长期循环荷载下人工结构性软土累积变形规律及预测模型[J]. 工程地质学报, 2017, 25(4): 975-984.
[9] 陈学军, 黄耀意, 宋宇, 周兴, 白汉营. 铅离子污染对桂林红黏土力学性质影响的试验研究[J]. 工程地质学报, 2016, 24(s1): 143-148.
[10] 曾召田, 赵艳林, 吕海波, 尹国强, 徐云山. 广西岩溶地区红黏土的工程地质特征及成因分析[J]. 工程地质学报, 2015, 23(s1): 90-96.
[11] 刘丽, 常红帅, 王宗, 吕海波. 水动力学参数对非饱和红黏土中溶质迁移的影响[J]. 工程地质学报, 2015, 23(s1): 193-199.
[12] 于国强, 张茂省, 王根龙. 泥石流平均流速预测模型及敏感因子研究[J]. 工程地质学报, 2014, 22(3): 355-360.
[13] 陈继彬, 赵其华, 彭社琴, 廖景高. 塑料排水板处理软基侧向变形规律及预测模型[J]. 工程地质学报, 2014, 22(2): 218-225.
[14] 刘宝臣, 唐黔, 李懿, 李翠娟. 外加剂对桂林含有机质水泥红黏土力学性质影响的试验研究[J]. 工程地质学报, 2013, 21(4): 554-559.
[15] 常鸣, 唐川, 苏永超, 黄翔超. 雅鲁藏布江米林段泥石流堆积扇危险范围预测模型[J]. 工程地质学报, 2012, 20(6): 971-978.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn