工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1491-1500    DOI: 10.13544/j.cnki.jeg.2017.06.012
地质灾害与斜坡稳定性 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
强震区侵蚀-溃决型泥石流的动力特性定量分析
黄勋1,2,3, 唐川3
1. 重庆市勘测院 重庆 401121;
2. 重庆市岩土工程技术研究中心 重庆 401121;
3. 成都理工大学地质灾害防治与地质环境保护国家重点实验室 成都 610059
QUANTITATIVE ANALYSIS OF DYNAMIC FEATURES FOR ENTRAINMENT-OUTBURST INDUCED CATASTROPHIC DEBRIS FLOWS IN WENCHUAN EARTHQUAKE AREA
HUANG Xun1,2,3, TANG Chuan3
1. Chongqing Survey Institute, Chongqing 401121;
2. Chongqing Engineering Research Center of Geotechnical Engineering, Chongqing 401121;
3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059
 全文: PDF (3450 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 强震作用导致流域内松散物源、微地貌及水文环境发生剧烈变化,致使强震区泥石流的形成机制和活动规律区别于普通泥石流。从启动判别、沟床侵蚀和溃决放大效应等3个方面入手,利用物理模型和数值模拟,定量分析了强震区泥石流启动-流通-堆积全过程的动力特性。结合案例验证了强震侵蚀-溃决型泥石流的力学机制。分析表明,泥石流沟床侵蚀是外部应力增加、内部强度衰减和松散物质基础3种机制的综合结果,沟道堰塞体溃决导致泥石流流量被瞬间放大,进而反馈到侵蚀机制中,导致泥石流规模剧增。红椿沟8 ·14泥石流案例验算显示,H02、H03堰塞体溃决导致泥石流流量放大至800.80m3 ·s-1,沟床侵蚀物质总量达34.72×104m3,约占总规模的50%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词汶川地震   泥石流   沟床侵蚀   溃决放大效应   FLO-2D     
Abstract: Many causative factors have changed acutely after the Wenchuan earthquake. They included the loose material, micro-topography and hydrological environment. Hence, the earthquake-induced debris flows are different from the general one. A whole debris flow process mechanism is developed and analyzed quantitatively using initiation discrimination model, bed-matrix erosion model and outburst-discharge enlargement model. It includes the initiation, transition and deposition phases. Moreover, the failure mechanism of the erosion-outburst-induced debris flow is illustrated clearly with an example. The result indicates that bed-matrix entrainment mechanism is the comprehensive outcome of the stress enlargement, strength degradation and material basis. The landslide dam outburst-induced discharge enlargement and the above-mentioned erosion mechanism are contributed to the large-scale debris flow. The case study of Hongchun catchment indicates that debris-flow discharge increases to 800.80m3·s-1 due to H02-03 landslide-dam outburst, and the entrainment-induced solid materials are half of the total magnitude, about 34.72×104m3.
Key wordsWenchuan earthquake   Debris flow   Entrainment mechanism   Outburst-enlargement effect   FLO-2D   
收稿日期: 2016-04-13;
基金资助:

科技部科技基础性工作专项项目(2011FY110100-3),国家科技支撑计划项目(2011BAK12B01),重庆市社会民生科技创新专项项目(cstc2016shmszx30021)资助

通讯作者: 唐川(1961-),男,博士,教授,博士生导师,主要从事地质灾害、地貌学与工程地质研究.Email:tangc707@gmail.com     E-mail: tangc707@gmail.com
作者简介: 黄勋(1986-),男,博士,主要从事地质灾害评价与预测方面研究.Email:huangxun198671@163.com
引用本文:   
. 强震区侵蚀-溃决型泥石流的动力特性定量分析[J]. 工程地质学报, 2017, 25(6): 1491-1500.
. QUANTITATIVE ANALYSIS OF DYNAMIC FEATURES FOR ENTRAINMENT-OUTBURST INDUCED CATASTROPHIC DEBRIS FLOWS IN WENCHUAN EARTHQUAKE AREA[J]. Journal of Engineering Geology, 2017, 25(6): 1491-1500.
 
[1] Cui P,Dang C,Zhuang J,et al. 2012. Landslide-dammed lake at Tangjiashan, Sichuan province, China(triggered by the Wenchuan Earthquake, May 12, 2008):risk assessment, mitigation strategy, and lessons learned[J]. Environmental Earth Sciences, 65 (4):1055~1065.
[2] Cui P,Zhou G G D,Zhu X H,et al. 2013. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 182 (427):173~189.
[3] Dymond J R,Jessen M R,Lovell L R. 1999. Computer simulation of shallow landsliding in New Zealand hill country[J]. International Journal of Applied Earth Observation and Geoinformation, 1 (2):122~131.
[4] Fan X,Tang C X, Westen C J V,et al. 2012. Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake[J]. Natural Hazards and Earth System Sciences, 12 (10):3031~3044.
[5] Han Z,Chen G Q,Li Y,et al. 2016. Elementary analysis on the bed-sediment entrainment by debris flow and its application using the TopFlowDF model[J]. Geomatics, Natural Hazards and Risk, 7 (2):1~22.
[6] Huang X,Tang C,Le M H,et al. 2013. Mechanism and characteristics on debris flow hazards in Yinchanggou area triggered by rainstorm on August 18, 2012[J]. Journal of Engineering Geology, 21 (5):761~769.
[7] Huang X,Tang C,Zhou W. 2014. Occurrence frequency estimation model for debris flow using numerical simulation[J]. Journal of Engineering Geology, 22 (6):1271~1278.
[8] Huang X,Tang C. 2014. Formation and activation of catastrophic debris flows in Baishui River Basin, Sichuan Province, China[J]. Landslides, 11 (6):955~967.
[9] Hungr O,Mcdougall S,Bovis M. 2005. Entrainment of material by debris flow[J]. in Debris-flow Hazards and Related Phenomena, Jakob M,Hungr O(eds.).Springer Berlin Heidelberg, 136~137.
[10] Iverson R M,Reid M E,Logan M,et al. 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 4 (2):116~121.
[11] Jiang Z L,Zhu J, Chang M,et al. 2014. Dynamic evolution characteristics of Hongchun gully source area of debris flow in Wenchuan earthquake region[J]. Mountain Research, 32 (1):81~88.
[12] Li A G,Yue Z Q,Tham L G,et al. 2005. Field-monitored variations of soil moisture and matric suction in a saprolite slope[J]. Canadian Geotechnical Journal, 42 (1):13~26.
[13] Li M H,Sung R T,Dong J J,et al. 2011. The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan-Part Ⅱ:Simulation of debris flow with landslide dam breach[J]. Engineering Geology, 123 (1):60~71.
[14] Liu C Z. 2012. Analysis on genetic model of Wenjiagou debris flows in Wenchuan earthquake area, Sichuan[J]. Geological Review, 58 (4):709~716.
[15] Luna B Q,Remaitre A, Asch T W J,et al. 2012. Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment[J]. Engineering Geology, 128:63~75.
[16] Mcdougall S,Hungr O. 2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42 (5):1437~1448.
[17] O'Brien J S,Julien P Y,Fullerton W T. 1993. Two-dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering, 119 (2):244~261.
[18] Revellino P,Hungr O,Guadagno F M,et al. 2004. Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy[J]. Environmental Geology, 45 (3):295~311.
[19] Scheidl C,Rickenmann D. 2010. Empirical prediction of debris-flow mobility and deposition on fans[J]. Earth Surface Processes and Landforms, 35 (2):157~173.
[20] Skempton A W. 1954. The pore-pressure coefficients A and B[J]. Géotechnique, 4 (4):143~147.
[21] Takahashi T. 1978. Mechanical characteristics of debris flow[J]. Journal of The Hydraulics Division, 104 (8):1153~1169.
[22] Tang C,Liang J T. 2008. Characteristics of debris flows in Beichuan epicenter of the Wenchuan earthquake triggered by rainstorm on September 24, 2008[J]. Journal of Engineering Geology, 16 (6):751~758.
[23] Tang C,Zhu J,Ding J,et al. 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8 (4):485~497.
[24] Wu Y,Pei X J,He S M,et al. 2013. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. Journal of Zhejiang University(Engineering Science), 47 (9):1585~1592.
[25] Xu Q. 2010. The 13 August 2010 catastrophic debris flows in Sichuan Province:characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 18 (5):596~608.
[26] Xue J F,Gavin K. 2008. Effect of rainfall intensity on infiltration into partly saturated slopes[J]. Geotechnical and Geological Engineering, 26 (2):199~209.
[27] Zhou W,Tang C. 2013. Rainfall thresholds for debris flows occurrence in the Wenchuan earthquake area[J]. Advances in Water Science, 24 (6):786~793.
[1] 谭玉芳, 李丽慧, 王学良, 刘海洋, 孙娟娟, 王明. 浙江台州某山区旅游景区泥石流基本特征及防治对策[J]. 工程地质学报, 2017, 25(Z1): 15-25.
[2] 谭玉芳, 李丽慧, 王学良, 刘海洋, 孙娟娟, 王明. 浙江台州某山区旅游景区泥石流基本特征及防治对策[J]. 工程地质学报, 2017, 25(s2): 83-93.
[3] 刘海娇, 鲁晓兵, 王淑云, 张旭辉. 细颗粒运移对土体力学特性的影响[J]. 工程地质学报, 2017, 25(s1): 153-157.
[4] 孟华君, 张向营, 张春山, 王鹏, 李焕彬. 汶川震区典型小流域泥石流发育特征及危险性[J]. 工程地质学报, 2017, 25(s1): 349-356.
[5] 付杰, 朱继良, 马鑫, 孙建平, 王洪磊. 基于流域尺度角半沟泥石流危险性评价[J]. 工程地质学报, 2017, 25(s1): 365-373.
[6] 蒋先刚, 卫云巍, 祁牡丹, 兰杰, 王欣欣, 孙兴, 吕梦婷, 钟文宇, 葛华, 高延超. 四川省卧龙镇熊猫沟泥石流灾害特征分析[J]. 工程地质学报, 2017, 25(s1): 384-389.
[7] 翟张辉, 沈伟, 李同录, 张中华, 阴晓冬, 张国伟. 天水市大沟滑坡-泥石流运动过程模拟分析[J]. 工程地质学报, 2017, 25(s1): 400-406.
[8] 徐如阁, 巴仁基, 刘宇杰. 基于流域单元的泥石流危险度评价方法研究——以四川省大渡河流域为例[J]. 工程地质学报, 2017, 25(s1): 284-288.
[9] 王志兵, 麦棠坤, 齐程. 泥石流孕育-启动过程的细粒作用[J]. 工程地质学报, 2017, 25(s1): 357-364.
[10] 梁敬轩, 胡卸文, 许晓君. 基于不同地质要素土质边坡的地震变形破坏颗粒流模拟[J]. 工程地质学报, 2017, 25(6): 1537-1546.
[11] 许强, 李骅锦, 何雨森, 亓星, 罗双. 文家沟泥石流治理工程效果的定量分析评价[J]. 工程地质学报, 2017, 25(4): 1046-1056.
[12] 冯文凯, 何山玉, 刘志刚, 易小宇, 白慧林. 平武县兴坪沟泥石流特征及其工程防治效果分析[J]. 工程地质学报, 2017, 25(3): 794-805.
[13] 陈成, 胡凯衡. 汶川、芦山和鲁甸地震滑坡分布规律对比研究[J]. 工程地质学报, 2017, 25(3): 806-814.
[14] 洪磊, 马润勇, 章晓余. 青海加吾矿区玛日当沟泥石流启动机理研究[J]. 工程地质学报, 2017, 25(2): 472-479.
[15] 姜来峰, 何长生. 功东高速公路复杂地质环境下的线路布设原则分析[J]. 工程地质学报, 2016, 24(s1): 67-71.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn