工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1501-1508    DOI: 10.13544/j.cnki.jeg.2017.06.013
地质灾害与斜坡稳定性 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
雅砻江上游互层斜坡倾倒变形破坏机制与演化
王飞, 唐辉明
中国地质大学(武汉)工程学院 武汉 430071
MECHANISM AND EVOLOTION OF TOPPLING IN INTERBEDDED SLOPES AT UPSTREAM OF YALONG RIVER
WANG Fei, TANG Huiming
Faculty of Engineering, China University of Geosciences, Wuhan 430071
 全文: PDF (5919 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 以甲西倾倒体为典型实例,从赋存环境、发育特征、形成条件等基础层面上分析雅砻江上游互层斜坡倾倒变形破坏机制及演化过程。研究表明:区内大型倾倒体是斜坡岩体在叠加有残余构造应力的自重应力场中长期演化的产物,软硬相间的岩性组合、陡倾内的岸坡结构,加之垂直层面密集节理的切割是斜坡发生倾倒变形的控制性因素;斜坡倾倒是受节理面和层面控制的复合倾倒模式,即:硬岩发生块状-弯曲倾倒,而软岩发生弯曲倾倒;受河谷演化控制,斜坡变形破坏主要经历了4个演化阶段:卸荷回弹陡倾面拉裂阶段,初始变形阶段,板梁根部折断、剪切面贯通阶段以及破坏阶段,并最终转化为蠕滑-拉裂模式形成滑坡。该滑动面受倾向坡外破裂面控制,而并非沿最大弯折带发育。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词雅砻江上游   互层斜坡   倾倒   变形破坏机制   演化     
Abstract: The mechanism and evolution of toppling in interbedded rock slopes in upstream of Yalong River are analyzed with the typical case of Jaxi toppling. The analysis covers the aspects of geological background, development characteristics and formation conditions. This comprehensive study points out that the large-scale toppling in research area is developed by the unique structure of slopes in gravity stress field. The slopes are consisted of a pervasive foliation dipping steeply into the slope, have soft layer and hard layer interbedded and a set of well-developed cross-joints. A model illustrates a typical feature of toppling failure of interbedded rock slope. It is recombination of block-flexure toppling in hard rock and flexural toppling in soft rock, respectively. With the evolution of Yalong River, the deformation of the slope experiences four steps:unloading and rebound, initial deformation, breaking in flexure, and failure as landslide. The sliding surface can be developed along the cross-joints, rather than the maximum bending zone.
Key wordsUpstream of Yalong River   Interbedded rock slope   Toppling   Failure mechanism   Evolution   
收稿日期: 2016-11-23;
基金资助:

国家自然科学基金重点项目(41230637),中国博士后科学基金(2016M592411)资助

通讯作者: 唐辉明(1962-),男,博士,教授,博士生导师,主要从事工程地质与岩土工程方面的教学和科研工作.Email:hmtang6205@sina.com     E-mail: hmtang6205@sina.com
作者简介: 王飞(1987-),男,博士生,主要从事大型工程岩石高边坡变形破坏机理及稳定性评价研究.Email:cugfeiwang@gmail.com
引用本文:   
. 雅砻江上游互层斜坡倾倒变形破坏机制与演化[J]. 工程地质学报, 2017, 25(6): 1501-1508.
. MECHANISM AND EVOLOTION OF TOPPLING IN INTERBEDDED SLOPES AT UPSTREAM OF YALONG RIVER[J]. Journal of Engineering Geology, 2017, 25(6): 1501-1508.
 
[1] Adhikary D P,Dyskin A V,Jewell R J,et al. 1997. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering, 30 (2):75~93.
[2] Bobet A. 1999. Analytical solutions for toppling failure[J]. International Journal of Rock Mechanics and Mining Sciences, 36 (36):971~980.
[3] Chen Z Y,Zhang J H,Wang X G. 1996. Simplified stability analysis method of toppling failure of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 18 (6):92~95.
[4] de Freitas M H D,Watters R J. 1973. Some field examples of toppling failure[J]. Géotechnique, 23 (4):495~514.
[5] Goodman R E,Bray J W. 1976. Toppling of rock slopes[C]//Rock Engineering:American Society of Civil Engineers, Geotechnical Engineering Division Conference. Boulder, Colorado, 2:201~234.
[6] Huang R Q. 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (3):433~454.
[7] Huang R Q. 2015. Understanding the mechanism of large-scale landslides[M]//Engineering Geology for Society and Territory-Volume 2:Landslide Processes. Switzerland:Springer:13~32.
[8] Liu C H,Jaksa M B,Meyers A G. 2009. A transfer coefficient method for rock slope toppling[J]. Canadian Geotechnical Journal, 46 (1):1~9.
[9] Liu L J,You X,Gu C Z. 2014. Numerical simulation of toppling rock mass of X inlong hydropower station[J]. Journal of Yangtze River Scientific Research Institute, 31 (11):92~96.
[10] Lu Z Q. 2001. Engineering geology[M]. Beijing:China Water & Power Press.
[11] Miao C,Sheng J H,Yang J L,et al. 2015. Research on bending and sliding deformation failure mechanism of Jiaxi Landslide of Yalong River[J]. Journal of Disaster Prevention and Mitigation Engineering, 35 (3):411~417.
[12] Nichol S L,Hungr O,Evans S G. 2002. Large-scale brittle and ductile toppling of rock slopes[J]. Canadian Geotechnical Journal, 39 (4):773~788.
[13] Pritchard M A,Savigny K W. 1990. Numerical modelling of toppling[J]. Canadian Geotechnical Journal, 27:823~834.
[14] Pritchard M A,Savigny K W. 1991. The heather hill landslide:An example of a large scale toppling failure in a natural slope[J]. Canadian Geotechnical Journal, 28 (3):410~422.
[15] Sagaseta C,Sanchez J M,Canizal J. 2001. A general analytical solution for the required anchor force in rock slopes with toppling failure[J]. International Journal of Rock Mechanics and Mining Sciences, 38:421~435.
[16] Wyllie D C,Mah C W. 2005. Rock slope engineering[M]. UK:Taylor & Francis Group.
[17] Xu P H,Chen J P,Huang R Q,et al. 2004. Deformation mechanism of Jiefanggou high steep dipslope in Jinping hydropower station[J]. Journal of Engineering Geology, 12 (3):247~252.
[18] Zanbak C. 1983. Design charts for rock slopes susceptible to toppling[J]. Journal of Geotechnical Engineering, 109 (8):1039~1062.
[19] Zhang J L. 2012. The tectonic landform features and evolution of the middle reaches of the Yalong River[D]. Chengdu:Chengdu University of Technology.
[20] 陆兆溱. 2001. 工程地质学[M]. 北京:中国水利水电出版社.
[21] 张建岭. 2012. 雅砻江中游构造地貌特征及演化[D]. 成都:成都理工大学.
[1] 曾臻, 向喜琼, 彭雄武, 史文兵. 贵州岩溶地区缓倾内斜坡变形破坏机制研究——以惠水新寨崩塌为例[J]. 工程地质学报, 2017, 25(s1): 16-23.
[2] 马行东, 单志, 李扬. 唐央滑坡形成机制分析和稳定性评价[J]. 工程地质学报, 2017, 25(s1): 274-278.
[3] 李小双, 支学艺, 张东明, 王孟来. 露天转地下采场覆岩变形破坏特征及其层厚效应研究[J]. 工程地质学报, 2017, 25(s1): 78-89.
[4] 曹家源, 马凤山, 郭捷, 卢蓉, 刘国伟. 露天开挖条件下顺倾断层倾倒变形特征[J]. 工程地质学报, 2017, 25(s1): 248-252.
[5] 肖瑞, 张巍, 许林, 施斌, 唐心煜, 梁小龙. 南京粉细砂三轴压缩试验孔隙结构演化观测[J]. 工程地质学报, 2017, 25(s1): 213-219.
[6] 郭建军, 王俊杰, 黎洪光, 闵志华. 坡后土体推力作用下反倾节理岩质边坡次生倾倒机理分析[J]. 工程地质学报, 2017, 25(5): 1205-1212.
[7] 谢吉尊, 冯文凯, 杨少帅, 李长顺, 胡云鹏, 王琦. 则木河断裂带活动特征和地质灾害对地貌演化的影响——以鹅掌河流域为例[J]. 工程地质学报, 2017, 25(3): 772-783.
[8] 乔小龙. 大采高综放开采覆岩破坏特征和裂隙演化规律[J]. 工程地质学报, 2017, 25(3): 858-866.
[9] 翟俊莅, 巨能攀, 赵建军. 高密度电法在倾倒变形分级中的应用研究[J]. 工程地质学报, 2017, 25(3): 873-878.
[10] 杨爱武, 张振东, 李潇雯, 郭林坪. 考虑前期固结影响的吹填软土安全运营阶段微结构演化特征[J]. 工程地质学报, 2017, 25(2): 284-291.
[11] 蒲超, 孟陆波, 李天斌. 三轴压缩条件下千枚岩破裂与能量特征研究[J]. 工程地质学报, 2017, 25(2): 359-366.
[12] 张涛, 谢忠胜, 石胜伟, 张勇, 苗朝, 韩新强. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报, 2017, 25(2): 496-503.
[13] 张世殊, 吴章雷, 赵小平, 冉从彦, 郭松峰, 黄晓林, 祁生文. 雅砻江两河口水电站庆大河左岸边坡某变形体变形机制分析与稳定性预测[J]. 工程地质学报, 2017, 25(1): 164-170.
[14] 李克蓬, 马凤山, 张洪训, 李威, 吕英磊. 海底金矿矿坑涌水水源判识及演化研究[J]. 工程地质学报, 2017, 25(1): 180-189.
[15] 许旭堂, 简文彬, 林玫玲, 王文韬, 樊秀峰. 循环荷载下含软弱夹层岩体声学特性试验研究[J]. 工程地质学报, 2016, 24(6): 1170-1176.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn