工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1537-1546    DOI: 10.13544/j.cnki.jeg.2017.06.017
地质灾害与斜坡稳定性 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于不同地质要素土质边坡的地震变形破坏颗粒流模拟
梁敬轩1, 胡卸文1,2, 许晓君1
1. 西南交通大学地球科学与环境工程学院 成都 610031;
2. 西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室 成都 610031
PARTICLE FLOW SIMULATION OF EARTHQUAKE INDUCED DEFORMATION FAILURE OF SOIL SLOPES WITH DIFFERENT GEOLOGICAL FACTORS UNDER EARTHQUAKE
LIANG Jingxuan1, HU Xiewen1,2, XU Xiaojun1
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031;
2. Engineering Laboratory Combined with National and Local of Spatial Information Technology of High Speed Railway Operation Safety, Southwest Jiaotong University, Chengdu 610031
 全文: PDF (11035 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为探讨地震作用下松散堆积体边坡的变形破坏特征,采用颗粒流模拟程序(PFC2D)输入水平向汶川地震波,对不同坡度及不同细观参数的土质边坡进行动力作用下变形破坏的全过程模拟。研究表明,相同地震力作用下坡度主要影响土质边坡的破坏范围,边坡越陡,破坏深度越大,破坏边界越靠后;而细观参数则影响边坡的破坏形式,黏性土边坡的滑体保持了较好的整体性,滑面呈弧形;而砂性土边坡的破坏具有流变性且滑面呈上陡下缓的折线形。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词汶川地震   土质边坡   颗粒流(PFC2D)   失稳模式     
Abstract: This paper aims to study the failure characteristics of the soil slope under the earthquake. It uses particle flow code(PFC2D),simulates the failure process of the soil slopes with different inclinations and micro-parameters under a Wenchuan horizontal seismic wave. The results show that the slope angle mainly affects the failure extent. The steeper the slope is,the deeper the sliding surface is.The micro-parameters control the failure type of the slope. The slide body of the cohesive slope can move as a whole with an arc-shaped sliding surface. Yet the failure of non-cohesive slope is rheologically behaved with a polyline sliding surface whose upper part is steep and lower part is flat.
Key wordsWenchuan earthquake   Soil slope   Particle flow code(PFC2D)   Failure mode   
收稿日期: 2017-01-07;
基金资助:

国家自然科学基金(41372293),四川省国土资源厅科学研究计划(KJ-2014-10,KJ-2015-18,KJ-2016-8),四川交通建设科技项目(2015A1-3)资助

通讯作者: 胡卸文(1963-),男,博士,教授,博士生导师,主要从事工程地质、环境地质方面的教学与研究工作.Email:huxiewen@163.com     E-mail: huxiewen@163.com
作者简介: 梁敬轩(1990-),男,博士生,主要从事工程地质方面的研究.Email:jingxuan@my.swjtu.edu.cn
引用本文:   
. 基于不同地质要素土质边坡的地震变形破坏颗粒流模拟[J]. 工程地质学报, 2017, 25(6): 1537-1546.
. PARTICLE FLOW SIMULATION OF EARTHQUAKE INDUCED DEFORMATION FAILURE OF SOIL SLOPES WITH DIFFERENT GEOLOGICAL FACTORS UNDER EARTHQUAKE[J]. Journal of Engineering Geology, 2017, 25(6): 1537-1546.
 
[1] Cundall P A,Konietzky H, Potyondy D O. 1996. PFC ein neues werkzeug fur numerische modellierungen[J]. Bautechnik, 73 (8):492~498.
[2] Cundall P A,Strack O D L. 1979. A discrete numerical model for granular assemblies[J]. Géotechnique, 29 (1):47~65.
[3] Cundall P A. 1971. A computer model for simulating large scale movements in blocky system[C]//Proceedings of symposium of the international society of rock mechanics. Rotterdam:Balkema A A:8~12.
[4] Du Y B. 2008. Numerical simulation of the landslide movement in xujiazhai in the highway from Taiyuan to Dalian[J]. Journal of Chongqing Jiaotong University, 27 (6):1099~1102.
[5] Hu X W,Huang R Q,Zhu H Y,et al. 2009. Earthquake reactivation effects and stability study of Malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (6):1270~1278.
[6] Huang R Q, Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (12):2585~2592.
[7] Itasca Consulting Group, Inc. 2006. PFC3D user's manual[R].Minneapolis, USA:Itasca Consulting Group, Inc.
[8] Wang Y,Li X,Wang S X,et al. 2012. PFC simulation of progressive failure process of landslide[J]. Journal of Yangtze River Scientific Research Institute, 29 (12):46~52.
[9] Xia M,Ren G M,Guo S S,et al. 2010. Flac3D numerical simulation of recurrence mechanism of landslide under earthquake loading[J]Journal of Engineering Geology, 18 (3):305~311.
[10] Zhang L,Tang H M,Xiong C R,et al. 2012. Movement process simulation of high-speed long-distance Jiweishan Landslide with PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (S1):2601~2611.
[11] Zhou J,Chi Y W,Chi Y,et al. 2000. Simulation of biaxial test on sand by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 22 (6):701~704.
[12] Zhou J,Chi Y,Chi Y W,et al. 2000. The method of particle flow and PFC2D code[J]. Rock and Soil Mechanics, 21 (3):271~274.
[13] Zhou J,Peng S Q,Fan L. 2008. Particle flow simulation of active earth pressure distribution on rigid retaining wall[J]. Rock and Soil Mechanics, 29 (3):629~638.
[14] Zhou J,Wang J Q,Zeng Y,et al. 2009. Simulation of slope stability analysis by particle flow code[J]. Rock and Soil Mechanics, 30 (1):86~90.
[1] 黄勋, 唐川. 强震区侵蚀-溃决型泥石流的动力特性定量分析[J]. 工程地质学报, 2017, 25(6): 1491-1500.
[2] 陈成, 胡凯衡. 汶川、芦山和鲁甸地震滑坡分布规律对比研究[J]. 工程地质学报, 2017, 25(3): 806-814.
[3] 黄莹, 李俊才, 张鹏, 周煜程. 基于L-M神经网络的陡崖层状危岩失稳模式预测[J]. 工程地质学报, 2016, 24(s1): 734-741.
[4] 胡田飞, 杜升涛. 基于偏应力的类土质路堑边坡松动区范围分析[J]. 工程地质学报, 2016, 24(s1): 1100-1107.
[5] 赵文, 王浩, 陈云, 胡熠. BFRP筋锚杆土质边坡支护应用研究[J]. 工程地质学报, 2016, 24(5): 1008-1015.
[6] 肖世国, 祝光岑. 土坡悬臂式抗滑桩一种抗震设计计算方法[J]. 工程地质学报, 2016, 24(5): 1022-1027.
[7] 李天斌, 徐正, 王瑞兴. 基于发震断裂位移的汶川地震区地应力场突变特征反演分析[J]. 工程地质学报, 2016, 24(5): 760-767.
[8] 张帅, 孙萍, 邵铁全, 石菊松, 孟静, 胡秋韵, 王涛. 甘肃天水黄土梁峁区强震诱发滑坡特征研究[J]. 工程地质学报, 2016, 24(4): 519-526.
[9] 卜祥航, 唐川, 屈永平, 常鸣, 程霄. 烧房沟滑坡型泥石流工程治理及效果分析[J]. 工程地质学报, 2016, 24(2): 220-227.
[10] 王运生, 徐鸿彪, 魏鹏, 马宏宇, 王福海, 雷清雄, 贺建先. 龙门山断裂带震后地球化学特征[J]. 工程地质学报, 2015, 23(s1): 24-30.
[11] 杜鹏, 曹修定, 裴向军, 朱继良. 冷木沟泥石流对地震叠加作用的物源响应分析[J]. 工程地质学报, 2015, 23(s1): 441-446.
[12] 杨日昌, 魏云杰, 吴瑞安. 杨房沟水电站高线混凝土系统边坡危岩体稳定性研究[J]. 工程地质学报, 2015, 23(s1): 524-528.
[13] 何源, 罗永红, 王运生, 高原. 刘家湾滑坡特征及成因机制探讨[J]. 工程地质学报, 2015, 23(5): 835-843.
[14] 乔建平, 王萌, 吴彩燕. 汶川地震灾区滑坡风险区划研究[J]. 工程地质学报, 2015, 23(2): 187-193.
[15] 赵晓彦, 胡厚田. 汶川大型地震滑坡的类型及启程剧动机理研究[J]. 工程地质学报, 2015, 23(1): 78-85.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn