首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1547-1556    DOI: 10.13544/j.cnki.jeg.2017.06.018
地质灾害与斜坡稳定性 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
蒋树1, 王义锋2, 唐川3, 潘洪月2, 王坤2
1. 中国长江三峡集团公司, 博士后工作站 北京 100038;
2. 中国三峡建设管理有限公司, 乌东德工程建设部 成都 610041;
3. 地质灾害防治与地质环境保护国家重点实验室(成都理工大学) 成都 610059
JIANG Shu1, WANG Yifeng2, TANG Chuan3, PAN Hongyue2, WANG Kun2
1. Postdoctoral Research Station, China Three Gorges Corporation, Beijing 100038;
2. Wudongde Project Construction Department, China Three Gorges Projects Development Co., Ltd., Chengdu 610041;
3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059
 全文: PDF (5828 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 金坪子滑坡是金沙江下游乌东德水电站下游方向距离大坝最近的一处巨型深厚崩坡积碎屑土古滑坡,以Ⅱ区活动部分为研究对象,在大量勘察试验成果以及长达11a的精确监测基础上,分析滑坡岩土体的物理力学性质以及滑坡的长期动态特征,特别是滑坡与降雨和地下水的动态响应关系,并基于Green-Ampt降雨入渗模型研究了降雨直接入渗补给地下水的可能性,利用极限平衡法探讨了理想刚塑性条件下该滑坡所受力的平衡关系,进而分析滑坡的活动机理。研究结果表明,滑坡的长期持续活动是滑带土黏性流变特征的表现,地表和深部位移均表现为牵引活动模式,地表自2005~2016年的平均位移速率为0.19~0.87mm ·d-1,深部以基底滑动为主,不同部位具有不同程度的内部变形。降雨是影响滑坡动态的最主要因素,在理想情况下,降雨很难直接入渗补给滑区地下水,地下水动态变化缓慢,与滑坡活动有一定正相关关系,但作用并不显著。与一些动态特征直接受地下水位影响的浅层低速滑坡不同,金坪子Ⅱ区的活动机理更可能是降雨在滑坡上部一定深度范围内形成暂态饱和区,滑体容重和渗透作用的变化影响了滑坡的动态。
E-mail Alert
关键词低速滑坡   滑坡动态   抗剪强度   降雨入渗   黏性流变     
Abstract: Jinpingzi landslide is the nearest deep-seated colluvial debris landslide to the arch dam of Wudongde hydropower station in the downstream direction in lower reaches of Jinsha River. Its active zone Ⅱ was studied. Based on geotechnical investigation and long-term monitoring, the physical and mechanical property of the landslide materials and the long-term kinematics, especially the relationships among the landslide movement, rainfall and the groundwater were analysed. The response of the groundwater regime to the precipitation was further analyzed under different initial water content conditions based on the Green-Ampt infiltration model. Relationships between resisting forces and driving forces were discussed by limit equilibrium method assuming rigid-plastic frictional slip. Results showed that the long-term continuous movement was mostly due to the viscous component of the slip zone. Surface and subsurface displacement both showed a retrogressive type with average surface displacement rate 0.19~0.87mm·d-1 from 2005 to 2016. Basal sliding accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the landslide activity but it is hard for rainfall water infiltrating to the deeply buried groundwater regime. Unlike some shallow landslides, the mechanism of Jinpingzi zone Ⅱ slow moving landslide was more likely to be the formation of transient saturated zone in shallow depth. The change of unit weight of the sliding mass and the effect of seepage affected the kinematics of the landslide.
Key wordsSlow moving landslide   Kinematics   Shear strength   Rainfall infiltration   Viscous rheology   
收稿日期: 2017-02-13;
作者简介: 蒋树(1987-),男,博士后,主要从事地质灾害分析评价与防治方面的研究工作.Email:jiangshu_1987@qq.com
. 金沙江下游金坪子Ⅱ区低速滑坡活动机理初探[J]. 工程地质学报, 2017, 25(6): 1547-1556.
[1] Bertini T,Cugusi F,D'Elia B,et al. 1984. Climatic conditions and slow movements of colluvial covers in Central Italy[C]//IV International Symposium on Landslides.[S.L.]:Canadian Geotechnical Society:367~376.
[2] Chen L,Young M H. 2006. Green-Ampt infiltration model for sloping surfaces[J]. Water Resources Research, 42 (7):887~896.
[3] Corominas J,Moya J,Ledesma A,et al. 1999. Monitoring of the Vallcebre landslide, Eastern Pyrenees, Spain[C]//Slope Stability Engineering. Rotterdam:Balkema:1239~1244.
[4] Corominas J,Moya J,Ledesma A,et al. 2005. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide(Eastern Pyrenees, Spain)[J]. Landslides, 2 (2):83~96.
[5] Dall'Olio L,Ghirotti M,Semenza E,et al. 1988. The Tessina landslide(eastern Pre-Alps, Italy):Evolution and possible intervention methods[C]//Proceedings of the 5th International Symposium on Landslide. Rotterdam:Balkema:1317~1322.
[6] Editorial Committee of Engineering Geology Handbook. 2007. Engineering geology handbook[M]. Beijing:China Architecture and Building Press:158~162.
[7] Fernández-Merodo J A,García-Davalillo J C,Herrera G,et al.2014.2D viscoplastic finite element modelling of slow landslides:the Portalet case study(Spain)[J]. Landslides, 11 (1):29~42.
[8] Glastonbury J,Fell R. 2008. Geotechnical characteristics of large slow, very slow, and extremely slow landslides[J]. Canadian Geotechnical Journal, 45 (7):984~1005.
[9] González D A,Ledesma A,Corominas J. 2008. The viscous component in slow moving landslides:A practical case[C]//Landslides and engineered slopes:from the past to the future. London:Taylor & Francis Group:237~242.
[10] Hu G T. 1995. Dynamics of landslide[M]. Beijing:Geological Publishing House:105~130.
[11] Huang S,Ding X,Zhang Y,et al. 2015. Triaxial test and mechanical analysis of rock-soil aggregate sampled from natural sliding mass[J]. Advances in Materials Science and Engineering, 2015:1~14.
[12] Hutchinson J N. 1988. General Report:morphological and geotechnical parameters of landslides in relation to geology and hydrogeology[C]//Fifth International Symposium on Landslide. Rotterdam:Balkema:3~36.
[13] Jiang S,Wen B P,Zhao C,et al. 2016. Kinematics of a slow-moving giant landslide in Northwest China:Constraints from high resolution remote sensing imagery and GPS monitoring[J]. Journal of Asian Earth Science, 123 (1):34~46.
[14] Leonardo C, Michele C,Maria G G. 2014. Displacement trends of slow-moving landslides:Classification and forecasting[J]. Journal of Mountain Science, 11 (3):592~606.
[15] Li G X. 2004. Advanced soil mechanics[M]. Beijing:Tsinghua University Press:238~270.
[16] Massey C I,Petley D N,McSaveney M J. 2013. Patterns of movement in reactivated landslides[J]. Engineering Geology, 159 (12):1~19.
[17] Nakamura H. 1984. Landslides in silts and sands mainly in Japan[C]//Proc. IV Int. Symp. On Landslides.[S.L.]:Canadian Geotechnical Society:155~178.
[18] Picarelli L. 2007. Considerations about the mechanics of slow active landslides in clay[C]//Progress in Landslide Science. Berlin:Springer:27~45.
[19] Ranalli M,Gottardi G,Medina-Cetina Z,et al. 2010. Uncertainty quantification in the calibration of a dynamic viscoplastic model of slow slope movements[J]. Landslides, 7 (1):31~41.
[20] Sun P,Yin Y P,Wu S R,et al. 2009. An experimental study on the initiation mechanism of rapid and long run-out loess landslide caused by 1920 Haiyuan earthquake[J]. Journal of Engineering Geology, 17 (4):449~454.
[21] Van Asch T W J,Malet J P,Bogaard T A. 2009. The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides[J]. Natural Hazards and Earth System Sciences, 9 (3):739~749.
[22] Van Asch T W,Van Beek L P H,Bogaard T A. 2007. Problems in predicting the mobility of slow-moving landslides[J]. Engineering geology, 91 (1):46~55.
[23] Varnes D J. 1978. Slope movement types and processes[C]//Schuster R L., Krizek R J. Landslides, Analysis and Control, Special Report 176. Washington, DC:Transportation Research Board, National Academy of Sciences:11~33.
[24] WP/WLI. 1995. A suggested method for describing the rate of movement of a landslide[J]. Bulletin of the International Association of Engineering Geology, 52 (1):75~78.
[25] Xu Y H,Xu Q M,Yang D Y,et al. 2006. Formation and geological setting of the accumulations in Jinpingzi reach of the Jinshajiang river[J]. Quaternary Sciences, 26 (3):429~435.
[26] Yan F Z,Wang S J,Xu R C. 2003. Deformation mechanism and development tendency of Maoping landslide after impounding of Geheyan reservoir on Qingjiang river, Hubei province, China[J]. Journal of Engineering Geology, 11 (1):15~24.
[27] 工程地质手册》编委会. 2007. 工程地质手册[M]. 北京:中国建筑工业出版社:158~162.
[28] 胡广韬. 1995. 滑坡动力学[M]. 北京:地质出版社:105~130.
[29] 李广信. 2004. 高等土力学[M]. 北京:清华大学出版社:238~270.
[1] 刘朝安, 贾宁, 孟庆辉. T型触探矩形截面探头特性研究[J]. 工程地质学报, 2017, 25(s1): 440-444.
[2] 祁兆鑫, 余冬梅, 刘亚斌, 付江涛, 胡夏嵩, 李淑霞, 赵丹. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J]. 工程地质学报, 2017, 25(6): 1438-1448.
[3] 魏继红, 王武超, 杨圆圆, 朱峰, 范昊天. 重复剪切作用下充填物对结构面力学性质的影响[J]. 工程地质学报, 2017, 25(6): 1482-1490.
[4] 祁昊, 冯文凯, 陈建峰, 白慧林, 周强, 郭小鹏. 四川理县桃坪冰水堆积物非饱和强度特性[J]. 工程地质学报, 2017, 25(5): 1357-1363.
[5] 陈学军, 周兴, 宋宇, 黄耀意. 淋滤条件下Zn2+污染对红黏土强度损伤特征试验研究[J]. 工程地质学报, 2017, 25(5): 1264-1269.
[6] 陈学军, 胡舒伟, 黄耀意, 白汉营. 纳米碳酸钙影响下红黏土强度特性试验研究[J]. 工程地质学报, 2017, 25(5): 1293-1298.
[7] 谢春庆, 潘凯, 廖崇高, 徐腾辉, 吉峰. 西南某机场高填方边坡滑塌机制分析与处理措施研究[J]. 工程地质学报, 2017, 25(4): 1083-1093.
[8] 张硕, 裴向军, 黄润秋, 谭淋耘, 范珊, 张子东, 崔雪婷. 降雨诱发黄土高填方支挡边坡失稳机理研究[J]. 工程地质学报, 2017, 25(4): 1094-1104.
[9] 夏涵, 蔡国军, 刘松玉. 全流触探贯入技术在海洋岩土工程中的应用研究综述[J]. 工程地质学报, 2016, 24(s1): 192-197.
[10] 刘朝安, 贾宁, 孟庆辉, 王洪播, 李振华. 椭圆形截面T型触探贯入阻力研究[J]. 工程地质学报, 2016, 24(s1): 214-220.
[11] 缪海波, 张修旺. 基于Richards传导方程的降雨型浅层滑坡稳定性分析[J]. 工程地质学报, 2016, 24(s1): 722-727.
[12] 孟颂颂, 李德营, 李仕波, 汪洋. 不同前期固结压力下粉砂类滑带土抗剪强度环剪试验研究[J]. 工程地质学报, 2016, 24(s1): 1355-1361.
[13] 渠孟飞, 谢强, 李朝阳, 贺建军. 基于数据挖掘技术的滑带土抗剪强度预测[J]. 工程地质学报, 2016, 24(6): 1103-1109.
[14] 李东升, 刘东升, 贺文俊, 胡江雷. 风化煤矸石抗剪强度粒径影响试验研究[J]. 工程地质学报, 2016, 24(3): 376-383.
[15] 王旭宏, 胡继华, 耿学勇, 杨立建, 李昶. 吉阳核电厂古近系软岩现场剪切试验及成果分析[J]. 工程地质学报, 2015, 23(s1): 745-749.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn