工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1557-1565    DOI: 10.13544/j.cnki.jeg.2017.06.019
地质工程实践 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
龙马溪组页岩三维缝网重构及分形分析
兰恒星1,2, 伍宇明1, 李全文1,3, 陈俊辉1,3, 赵晓霞1,3
1. 中国科学院地理科学与资源研究所 北京 100101;
2. 长安大学地质工程与测绘学院 长安 710054;
3. 中国科学院大学 北京 100049
RECONSTRUCTION AND FRACTAL ANALYSIS FOR THREE DIMENSIONAL FRACTURE NETWORK OF LONGMAXI SHALE
LAN Hengxing1,2, WU Yuming1, LI Quanwen1,3, CHEN Junhui1,3, ZHAO Xiaoxia1,3
1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101;
2. School of Geological Engineering and Geomatics, Chang'an University, Chang'an 710054;
3. University of Chinese Academy of Sciences, Beijing 100049
 全文: PDF (4670 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统上研究含气页岩宏观缝网特征的方法多是基于小样品开展,通过观察小样品的裂缝展布特征来了解页岩的裂缝发育的宏观特性。但是这类方法因尺度过小,缺乏代表性,不能获取连续面上的裂缝特征,难以分析裂缝发育和地应力方向之间的关系。为获取更详细的大尺度含气页岩的宏观裂缝特征,本文从重庆市涪陵地区石柱县采样获取2m×3m×0.7m完整大尺度岩块,并采用有序标号切割来获取30cm3规格岩样,在此基础上提取小岩样的表面裂缝并按照大尺度岩样切割的相对顺序构建三维裂缝网络。分析观测大尺度的三维裂缝网络可以发现,含气页岩的裂缝分布具有明显的规律性:水平主应力方向上的裂缝发育度普遍高于最小水平主应力方向;垂直方向上的裂缝与最小水平主应力的夹角为-62°。分维研究表明所有不同面上的裂缝均符合分维特性,说明小尺度裂缝特征和大尺度裂缝特征具有相似的规律性。此外,研究还表明最大水平主应力上的裂缝密度和分形维数最大,缝网结构最为复杂,最小水平主应力方向缝网结构次之,垂直主应力方向的裂缝结构最为简单;水平应力方向上主要以层理裂缝为主,垂直方向上以剪切缝为主,且与最小水平主应力的夹角为-62°。在掌握宏观裂缝分布特征基础上,研究可为页岩显微观测实验提供相应的理论依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词页岩   三维缝网   裂缝特征   涪陵地区   分形     
Abstract: Recent studies were based on the small samples which were as big as core samples to get the fracture propagation features. However, the small samples had many limitations. For example, continuous fracture propagation characteristics were difficult to get, which means it was a tough work to analyze the relationship between in-situ stress and fracture distribution. Hence, fracture propagation characteristics were gathered from a 2m×3m×0.7m samples from Shizhu County, Chongqin. The sample was cut into several cubic samples whose lengths of the sides were 30cm. At the same time, every surface of the cubic sample is numbered. Then the fracture distribution characteristics on each surface of the samples is obtained. The 3D fracture network is rebuilt according to the surface number. The fracture network shows the obvious rules that there are more fractures on the surface in the principle stress direction in contrast to other directions. The fractures on the surface perpendicular to the principle stress are 62°to the principle stress direction. Research on the fractal dimension proves that fractures on the different surfaces conform to the fractal dimension feature, which indicates that fractures' structure in small scale and big scale have similar regularity. In addition, fracture density and fractal dimension number in the maximum principle stress direction are bigger than other directions, which means fracture network structure is more complex. And fracture network structure in the surface perpendicular to the principle stress is less complex than that in the minimum horizontal stress direction. There are more bedding fractures in the horizontal stress direction while more shear fractures in the vertical direction, which are-62°to the minimum horizontal principle stress direction.
Key wordsShale   3D fracture network   Fracture feature   Fulin area   Fractal   
收稿日期: 2016-11-11;
基金资助:

中国科学院战略性先导科技专项(B类)(XDB10030300),国家自然科学基金国家杰出青年基金项目(41525010),国家自然科学基金创新群体项目“地理时空数据分析”(41421001)资助

作者简介: 兰恒星(1972-),男,博士,研究员,从事岩石力学及地质灾害方面研究.Email:lanhx@lreis.ac.cn
引用本文:   
. 龙马溪组页岩三维缝网重构及分形分析[J]. 工程地质学报, 2017, 25(6): 1557-1565.
. RECONSTRUCTION AND FRACTAL ANALYSIS FOR THREE DIMENSIONAL FRACTURE NETWORK OF LONGMAXI SHALE[J]. Journal of Engineering Geology, 2017, 25(6): 1557-1565.
 
[1] Chen L,Lu Y,Jiang S,et al. 2015. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 65:232~246.
[2] Chen M,Pang F,Jin Y. 2000. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 19 (S1):868~872.
[3] Chen W L, Zhou W, Luo P, et al. 2013. Analysis of the shale gas reservoir in the lower Silurian Longmaxi Formation, Changxin 1 well, Southeast Sichuan basin, China. Acta Petrologica Sinica, 29 (3):1073~1086.
[4] Chen S B,Zhu Y M,Qin Y,et al. 2014. Reservoir evaluation of the Lower Silurian Longmaxi Formation shale gas in the southern Sichuan Basin of China[J]. Marine and Petroleum Geology, 57 (2):619~630.
[5] Dai J,Zou C,Liao S,et al. 2014. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 74:3~12.
[6] Ding W L,Li C,Li C Y,et al. 2012. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 19 (2):212~220.
[7] Fairhurst C E,Hudson J A. 1999. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 36 (3):281~289.
[8] Gale J F,Reed R M,Holder J. 2007. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. Aapg Bulletin, 91 (4):603~622.
[9] Guo T K,Zhang S C,Ge H K. 2013. A new method for evaluation ability of forming fracture network in shale reservoir[J]. Rock and Soil Mechanics, 34 (4):947~954.
[10] Hou B,Cheng W,Chen M,et al. 2014. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 34 (12):81~86.
[11] Hou Z K, Yang C H, Wang L, et al. 2016. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test. Rock and Soil Mechanics, 37 (2):407~414.
[12] Li Q H,Chen M,Jin Y, et al. 2012. Experimental research on failure modes and mechanical behaviors of gas-bearing shale[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (S2):3763~3771.
[13] Liang C,Jiang Z,Yang Y T,et al. 2012. Shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin, China[J]. Petroleum Exploration and Development, 39 (6):736~743.
[14] Liu S G,Wang S Y,Sun W,et al. 2012. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Journal of Chengdu University of Technology(Science &Technology Edition), 40 (6):621~639.
[15] Ma W X,Liu S G,Huang W M,et al. 2012. Characteristics of Silurian paleo-oil reservoirs and their significance for petroleum exploration on the southeast margin of Sichuan Basin[J]. Oil & Gas Geology, 33 (3):432~441.
[16] Mandelbrot B B. 1967. How long is the coast of Britain[J]. Science, 156 (3775):636~638.
[17] Martin C D. 1997. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 34 (5):698~725.
[18] Rijken P,Cooke M L. 2001. Role of shale thickness on vertical connectivity of fractures:application of crack-bridging theory to the Austin Chalk, Texas[J]. Tectonophysics, 337 (1):117~133.
[19] Wang N C, Zhao J Z, Ding W L, et al. 2015. Development characteristics of Shale Fracture in Longmaxi Formation in Southeast Sichuan[J]. Natural Gas Geoscience, 26 (4):760~770.
[20] Wei Y L,Yang C H,Guo Y T,et al. 2015. Experimental research on deformation and fracture characteristics of shale under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 37 (12):2262~2271.
[21] Yin A Q. 2015. Research on rapid economic development of China's shale gas development[J]. Oriental Enterprise Culture,(12):121~122.
[22] Zhang J C,Xue H,Zhang D M,et al. 2003. Shale gas and its accumulation mechnism[J]. Geoscience,(4):466.
[23] Zhang X L, Li Y F, Lv H G, et al. 2013. Relationship between organic matter characteristics and depositional environment in the Silurian Longmaxi formation in Sichuan basin. Journal of China Coal Society, 38 (5):851~856.
[24] Zhang X,Thiercelin M J,Jeffrey R G. 2007. Effects of frictional geological discontinuities on hydraulic fracture propagation[C]//SPE Hydraulic Fracturing Technology Conference:1~11.
[25] Zhao C J, Yang R C, Tian X Y. 1989. Relationship between the tectonic stress field and oil-gas enrichment in east Sichuan structures. Acta Petrolei Sinica, 10 (2):19~30.
[26] 张金川,薛会,张德明,等. 2003. 页岩气及其成藏机理[J]. 现代地质,(4):466.
[1] 李志清, 沈鑫, 戚志宇, 胡瑞林. 基于压汞法与气体吸附法的页岩孔隙结构特征对比研究[J]. 工程地质学报, 2017, 25(6): 1405-1413.
[2] 王洪建, 刘大安, 黄志全, 袁广祥, 吕晓春, 牛晶蕊, 赵子江, 石晓闪. 层状页岩岩石力学特性及其脆性评价[J]. 工程地质学报, 2017, 25(6): 1414-1423.
[3] 徐永福. 固体颗粒破碎的分维演化规律[J]. 工程地质学报, 2017, 25(5): 1287-1292.
[4] 李关访, 李晓, 李守定, 赫建明, 张召彬, 孙宝才. 页岩储层压裂工艺技术在渝东地区应用[J]. 工程地质学报, 2017, 25(3): 853-857.
[5] 万小乐, 赫建明, 郑博. 单轴加载条件下页岩层理角度对水力压裂缝扩展规律影响研究[J]. 工程地质学报, 2017, 25(1): 88-94.
[6] 汪虎, 郭印同, 张萍, 王磊, 侯振坤. 四川盆地焦石坝区块深部页岩力学特性试验研究[J]. 工程地质学报, 2016, 24(5): 871-880.
[7] 赵海军, 马凤山, 刘港, 郭捷, 冯雪磊. 不同尺度岩体结构面对页岩气储层水力压裂裂缝扩展的影响[J]. 工程地质学报, 2016, 24(5): 992-1007.
[8] 黄明, 邱继业, 詹金武, 苏燕, 谢秀栋. 含水状态下弱风化泥质粉砂岩冲击破碎的分形规律研究[J]. 工程地质学报, 2016, 24(4): 597-603.
[9] 汤连生, 夏涵, 宋晶. 真空预压软土的排水通道演变特征[J]. 工程地质学报, 2015, 23(s1): 179-183.
[10] 许丹, 陈瑞生, 李慧, 王川婴, 胡瑞林. 基于孔内影像的岩石节理粗糙度特征研究[J]. 工程地质学报, 2015, 23(5): 918-923.
[11] 徐永福, 奚悦, 冯兴波, 朱洪高, 褚飞飞. 岩石单颗粒压缩破碎的数值模拟分析[J]. 工程地质学报, 2015, 23(4): 589-596.
[12] 徐永福, 项国圣, 褚飞飞, 吴蓉. 膨润土膨胀变形的分形模型[J]. 工程地质学报, 2014, 22(5): 785-791.
[13] 邓涛, 詹金武, 黄明, 范富童. 酸碱环境下红层软岩—泥质页岩的崩解特性试验研究[J]. 工程地质学报, 2014, 22(2): 238-243.
[14] 张鹏, 陈剑平, 赵安平, 张丽. 隧道围岩断面轮廓分维数的小波分析算法及应用[J]. 工程地质学报, 2011, 19(5): 669-673.
[15] 包惠明, 魏雪丰. 干湿循环条件下膨胀土裂隙特征分形研究[J]. 工程地质学报, 2011, 19(4): 478-482.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn