工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2017, Vol. 25 Issue (6): 1633-1639    DOI: 10.13544/j.cnki.jeg.2017.06.028
地质工程实践 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
考虑邻近土洞影响的盾构掘进速度控制
刘镇, 黎杰明, 杨旭, 陆仪启, 周翠英
中山大学土木工程学院 广州 510275
OPTIMAL CONTROL OF TBM EXCAVATION RATE CONSIDERING NEIGHBORING SOIL VOID
LIU Zhen, LI Jieming, YANG Xu, LU Yiqi, ZHOU Cuiying
School of Civil Engineering, Sun Yatsen University, Guangzhou 510275
 全文: PDF (1477 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 盾构机穿越邻近土洞区域是在岩溶区修建的地铁隧道常常遇到的问题,为降低盾构掘进对土洞的扰动,以防止盾构突陷、偏离轴线或发生地面塌陷,需对穿越时盾构的掘进参数进行优化控制。针对当前主要根据经验选取掘进参数的不足,根据弹性力学Mindlin解建立了盾构穿越邻近土洞的力学模型,在此基础上,以掘进速度为控制变量,以掘进引起土洞顶部能量密度变化为指标函数,提出了穿越时的掘进速度最优控制问题,并利用梯度法进行了数值求解,最后将该方法运用于广州地铁九号线花-马区间盾构穿越邻近土洞问题的分析中。结果表明:该模型能有效反映盾构掘进时正面推力对土洞顶部的扰动;在该模型上建立的掘进速度最优控制问题,能对掘进速度的控制策略进行优化,优化结果与工程经验相符,具有一定工程应用价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词岩溶   土洞   盾构隧道   掘进速度   最优控制     
Abstract: Tunneling with neighboring soil void is a particular challenge for underground railway construction in karst terrain. To reduce the disturbance to neighboring soil voids generated by the TBM and to secure the TBM from sudden settlement, axis deviation and ground collapse, it's necessary to conduct TBM tunneling parameters optimization. Aiming at the existing circumstances that TBM tunneling parameters are mostly determined by engineering experiences, a mechanical model based on Mindlin solution is built and an optimal control problem about excavation rate is proposed using the excavation rate regarded as a controlled variable, and the variation of energy density is regarded as the performance index. The problem is then solved using Gradient method. This optimization method has been introduced to the construction of a TBM tunnel in Line 9,Guangzhou Railway System. The results indicate that the model proposed in this study can effectively reflect the disturbance at the top of neighboring soil voids caused by bulkhead thrust in TBM tunneling. The optimization based on optimal excavation rate control problem agrees with engineering experiences.
Key wordsKarst   Soil void   TBM tunneling   Driving speed   Optimal control   
收稿日期: 2017-11-20;
基金资助:

国家自然科学基金项目(41530638,41030747,41227002,41372302,41472257)资助

通讯作者: 周翠英(1963-),女,博士,教授,主要从事地质工程与岩土工程研究.Email:ueit@mail.sysu.edu.cn     E-mail: ueit@mail.sysu.edu.cn
作者简介: 刘镇(1981-),男,博士,副教授,主要从事软岩力学与隧道边坡稳定性研究.Email:liuzh8@mail.sysu.edu.cn
引用本文:   
. 考虑邻近土洞影响的盾构掘进速度控制[J]. 工程地质学报, 2017, 25(6): 1633-1639.
. OPTIMAL CONTROL OF TBM EXCAVATION RATE CONSIDERING NEIGHBORING SOIL VOID[J]. Journal of Engineering Geology, 2017, 25(6): 1633-1639.
 
[1] Hao Y X. 2011. Reconnaissance report on supplementary geotechnical engineering of Huadu square to Maanshan Park in Guangzhou metro line 9[R]. Guangzhou:Guangzhou Geological Prospecting Engineering Company.
[2] Jiang X Z. 2008. Integrated research for karst soil-void(sinkhole collapse) hazard of linear engineering[D]. Beijing:China University of Geosciences.
[3] Lei J S. 2014. Foundation stability and filling technology research on hidden karst in Guangzhou metro[D]. Changsha:Central South University.
[4] Li C L,Miao L C. 2016. Determination of the range of shield tunneling-induced soil disturbance[J]. Rock and Soil Mechanics, 37 (3):759~766.
[5] Liao J. 2011. Metro shield tunneling construction treatment in karst area[J]. Guangdong Architecture Civil Engineering,(11):25~28.
[6] Liao L P,Yang W K,Wang Q Z. 2010. Stability analysis of an ellipsoidal cavity in foundation[J]. Rock and Soil Mechanics, 31 (S2):138~148.
[7] Liu Z K,Liang J C. 2006. Determination of Subgrade bearing capacity for soil cave in karst region[J]. Journal of Railway Engineering Society, (6):29~33.
[8] Long Y K. 2012. The study of stability and processing technology of karst caves in Changsha metro line 1[D]. Changsha:Central South University.
[9] Mindlin R D. 1936. Force at a point in the Interior of a semi-Infinite solid[J]. Journal of Applied Physics, 7 (5):195~202.
[10] Tang X W,Zhu J,Liu W,et al. 2010. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (2):417~422.
[11] Wang H,Tan W,Huang W R. 2012. Study on construction technology of Shield Tunnel in north extension section of Guangzhou Metro Line 3[M]. Beijing:China Communications Press.
[12] Wang Q W. 2007. Stability evaluation and engineering treatment of karst cave and soil cave[J]. Gansu Science and Technology, 23 (6):175~178.
[13] Xia Y Y. 2015. The research and application of the scope of end pre-reinforcement of shield construction of Guangzhou metro[D]. Lanzhou:Lanzhou Jiaotong University.
[14] Xie H H. 2011. Shield construction technology analysis of subway tunnel in karst and earth cave complex stratum[J]. Technology and Market, 18 (2):41~43.
[15] Yuan D J,Yin F,Wang H W,et al. 2009. Study of soil disturbance caused by super-large diameter slurry shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (10):2074~2080.
[16] Zhao M J,Ao J H,Liu X H,et al. 2004. Model testing research on influence of karst cave size on stability of surrounding rockmasses during tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (2):213~217.
[17] Zhu H H,Xu Q W,Zheng Q Z,et al. 2007. Experimental study on the working parameters of EPB shield tunneling in soft ground[J]. China Civil Engineering Journal, 40 (9):87~94.
[18] Zhu W B,Ju S J,Shi H O. 2007. Research on construction technology of shield tunnel in Guangzhou metro line 3[M]. Guangzhou:Jinan University Press.
[19] Zhu X Z. 2013. Construction technology of filling and grouting of karst cave of shield tunnel in karst areas[J]. Railway Construction Technology,(12):49~52.
[20] 郝以显. 2011. 广州市轨道交通九号线工程花都广场至马鞍山公园区间补充勘察阶段岩土工程勘察报告[R]. 广州:广州地质勘察基础工程公司.
[21] 蒋小珍. 2008. 线性工程路基岩溶土洞(塌陷)灾害防治综合研究[D]. 北京:中国地质大学.
[22] 雷金山. 2014. 广州地铁隐伏型岩溶地基稳定性分析及充填处理技术研究[D]. 长沙:中南大学.
[23] 龙艳魁. 2012. 长沙地铁1号线工程岩溶洞穴稳定性及其害处研究[D]. 长沙:中南大学.
[24] 王晖,谭文,黄威然. 2011. 广州地铁三号线北延段盾构隧道工程施工技术研究[M]. 北京:人民交通出版社.
[25] 夏洋洋. 2015. 广州地铁盾构施工端头预加固合理范围研究及应用[D]. 兰州:兰州交通大学.
[26] 竺维彬,鞠世健,史海欧. 2007. 广州地铁三号线盾构隧道工程施工技术研究[M]. 广州:暨南大学出版社.
[1] 池彦宾, 李庆华, 卢丙清. 南川至道真高速三泉隧道下穿岩溶暗河涌水点特征[J]. 工程地质学报, 2017, 25(s1): 68-71.
[2] 曾臻, 向喜琼, 彭雄武, 史文兵. 贵州岩溶地区缓倾内斜坡变形破坏机制研究——以惠水新寨崩塌为例[J]. 工程地质学报, 2017, 25(s1): 16-23.
[3] 张顺峰, 胡瑞林, 董国伟. 宜巴高速舒家槽段岩溶发育规律及对公路建设的影响[J]. 工程地质学报, 2017, 25(s1): 29-34.
[4] 廖阳, 张可能, 张岳, 李鹏举, 张云毅, 万浩然. 岩溶管道涌水注浆封堵技术研究[J]. 工程地质学报, 2017, 25(s1): 1-6.
[5] 廖存刚, 刘皓, 孙文超, 闫斌. 滇中引水工程昆明段岩溶水发育规律及对隧洞工程的影响[J]. 工程地质学报, 2017, 25(s1): 7-15.
[6] 栾德祥, 刘琦, 顾展飞, 苏高裕, 苏敏. 广清高速公路改扩建工程施工期间岩溶塌陷的灾变模式[J]. 工程地质学报, 2017, 25(s1): 35-40.
[7] 杨福荣, 李耀周, 林义华, 杨平恒. 在线示踪试验在隧道建设前期勘察中的应用研究——以重庆城开高速公路拟建旗杆山隧道为例[J]. 工程地质学报, 2017, 25(s1): 421-427.
[8] 陈学军, 杨越, 白汉营, 宋宇, 陈李洁. 基于ANP-模糊聚类分析法的岩溶塌陷研究[J]. 工程地质学报, 2017, 25(5): 1213-1219.
[9] 褚学伟, 许模, 王中美, 李博. 基于SARIMA模型的岩溶山区泉流量动态预测[J]. 工程地质学报, 2017, 25(3): 867-872.
[10] 王飞, 柴波, 徐贵来, 陈龙, 熊志涛. 武汉市岩溶塌陷的演化机理研究[J]. 工程地质学报, 2017, 25(3): 824-832.
[11] 汪洪星, 吴军, 谈云志, 左清军, 明华军. 盾构-矿山法隧道并行施工的相互扰动分析[J]. 工程地质学报, 2017, 25(2): 344-351.
[12] 郑智杰. 地形起伏对高密度电法探测地下岩溶管道的影响试验研究[J]. 工程地质学报, 2017, 25(1): 230-236.
[13] 李宝学, 秦大军, 郭艺, 刘文才, Mohammed Haji, 林琳, 管清花. 玉符河对济南岩溶水化学过程的影响研究[J]. 工程地质学报, 2017, 25(1): 190-198.
[14] 曲海珠, 姚鹏程, 谷键. 大岩洞水电站岩溶发育特征分析与评价[J]. 工程地质学报, 2016, 24(s1): 331-334.
[15] 童立元, 孟长江, 张德富, 郑灿政, 方磊. 地铁隧道建设中隔离桩设置对临近高铁桥梁桩基的保护效果分析[J]. 工程地质学报, 2016, 24(s1): 415-421.
版权所有 © 2009 《工程地质学报》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn