首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2018, Vol. 26 Issue (1): 42-50    DOI: 10.13544/j.cnki.jeg.2018.01.005
工程地质力学与地质工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
尚彦军1, 杨志法1, 何万通1, 李丽慧1, 罗巧慧2, 陶晨晓2, 杨朋1
1. 中国科学院地质与地球物理研究所, 中国科学院页岩气与地质工程重点实验室 北京 100029;
2. 浙江省温岭市长屿硐天旅游实业有限公司 温岭 317502
SHANG Yanjun1, YANG Zhifa1, HE Wantong1, LI Lihui1, LUO Qiaohui2, TAO Chenxiao2, YANG Peng1
1. Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;
2. Changyudongtian Tourism Industrial Co., Ltd. Wenling, Zhejiang, Wenling 317502
 全文: PDF (3873 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 采矿塌陷在开采施工中被给予了特别关注,也是施工地质灾害重要表现形式之一。已有地震记录中不乏对其形态辨识,然而少见对塌陷机理和发生过程中能量转换等较全面的研究。温岭市长屿硐天采矿遗址区碧玉潭洞室群1997年8月11日早晨发生持续时间约20 s大塌方。现场残留了面积约31 380 m2、体积约1.35×106 m3的塌陷岩体。通过现场工程地质调查、塌陷过程追溯、邻近地震台站频谱记录分析,笔者认为这次发生在凝灰岩中的大规模塌陷系因地下采石过程中保安矿柱被过量开挖掉而引发局部顶板破裂和应力分布的大改变,进而发展至整个矿区岩体塌落破坏,使矿坑积水飞溅和压缩空气冲击波带来了沿途150 m范围内人员伤亡、树木折断和财产损失。塌陷区南93 km的温州台地震波谱记录了这次采矿塌陷地震活动,其波形数据与现场塌陷破坏能量转化情况基本吻合。在采矿活动中保安矿柱的合理配置、为人员安全设置变形破坏过程监测等,是需考虑的预防塌陷措施。
E-mail Alert
关键词塌陷地震   采矿   长屿硐天   凝灰岩   地震记录   能量转换     
Abstract: Quarrying-induced collapse, an issue of particular concern in mining industry, is a typical form of man-made disaster. Identification of the morphological characteristics of such collapses is commonly based on seismic records. But comprehensive studies regarding the mechanism and energy conversion mode utilizing the seismic record are seldom undertaken. A huge collapse event occurred at the Biyutan mining cavern at Changyu Dongtian in Wenling city, China. It lasted for about 20 seconds and was observed and recorded on August 11, 1997. After the collapse, nearly 1.35×106 m3 of rock blocks were left on the floor and occupied an area of about 31 380 m2. the authors conducted a field survey on engineering geology, retrospectively analyzed the collapsing process through interviewing local residents and referring related documents, and identified the seismic records from surrounding seismic stations. The roof collapse is established at the Biyutan cavern that was excavated in massive tuff. The over excavation of several pillars substantially affected the stress field in cavern roof, which gave a rise to a local failure of the roof and then gradually developed into a widespread failure. During the collapse, outbursts of water and air shock waves resulted in loss of life and property within a distance of 150 m from the mine opening. The seismic records of Wenzhou Station 93 km south from the site revealed the collapse event, which is agreement with the energy transformation in site retrospective analysis on building failures and subject movement. This event reminds us that reasonable allocation of sufficiently strong safety pillars and installation of monitoring system are absolutely essential in underground quarrying operations to avoid overall failure and ensure the safety of the people nearby.
Key wordsCollapse earthquake   Quarry   Changyu Dongtian   Tuff   Seismic records   Energy transformation   
收稿日期: 2016-12-31;


作者简介: 尚彦军(1967-),男,博士,研究员,主要从事水文工程地质科研教学工作.Email:jun94@mail.igcas.ac.cn
. 长屿采矿遗址1997年采石塌陷及地震记录[J]. 工程地质学报, 2018, 26(1): 42-50.
[1] Chen Y H,Zhu J Y. 2012. World heritage perspective on stone culture landscape in Changyudongtian[J]. Chinese Landscape Architecture,28 (7):13-18.
[2] Cheng H Y,Wu A X,Han B,et al. 2016. Stability of safety pillars in opencast-underground combined mining[J]. Journal of Central South University(Science and Technology),47(9):3183-3192.
[3] Datong Earthaquake. 1974. Exploring the law of the coal mining collapse by using seismic method[J]. Journal of Shanxi Earthquake,(1):14-16.
[4] Di X L,Wang P,Jin Z D,et al. 2009. Preliminary analysis on collapse earthquakes in Northern Yulin, Shaanxi Province[J]. Journal of Catastrophology,24 (4):81-83.
[5] Gao Y,Cao M M,Dai H F,et al. 2014. Research on prediction of collapse earthquake disaster in Yulin Region, Shaanxi Province[J]. Journal of Natural Disasters,23 (3):213-221.
[6] Gu C Z. 1982. Collapse earthquakes in Three Gorges Area of the Yangtze River[J]. Earthquake,(3):21-22.
[7] Gu D Z. 1979. Engineering geomechanical basement of rock mass[M]. Beijing:Science Press:204-207.
[8] He X Q,Cao J L,Xu Z. 1997. Study on the featuer of collapse earthquake caused by coal mining and its forecast, Shanxi[J]. The Chinese Journal of Geological Hazard and Control,8 (S1):108-113.
[9] Hu B N,Jiang Z L,Guo W Y. 2017. Temporal and spatial analysis of surface collapses factors in Qujiang Mine[J]. Coal Science and Technology,45 (1):189-193.
[10] Hu Y L,Yang Q Y,Chen X C. 1998. Mining-induced earthquakes in the area around the Yangtze Gorge Project[J]. Seismology and Geology,20 (4):349-360.
[11] Li J L,Dong C L. 2001. Explosion identification for digital seismic record[J]. Seismological and Geomagnetic Observation and Research,22 (3):28-35.
[12] Lin H C,Wang B P,Liu H R,et al. 1990. Comparative study of tectonic and collapse earthquakes[J]. Acta Seismologica Sinica,12 (4):448-455.
[13] Liu Z X,Chen S M,Jia Q. 2016. Study on optimization of thickness of safety pillar in deep mining transition zone in a copper mine[J]. Industrial Minerals and Processing,(11):54-58.
[14] Ma W T,Xu C P,Li H O,et al. 2010. Intensive observation of reservoir-induced earthquake and preliminary analysis on the causes of earthquakes in the Three Gorges Reservoir[J]. Seismology and Geology,32 (4):552-563.
[15] Tan Z J. 1996. Earthquakes of Chinese karst region and their damage characteristics[J]. Journal of Seismology,(4):34-38.
[16] Wang G Z,Ling X S,Zhang Y L,et al. 2012. Characteristic Recognition of Non-natural Earthquakes such as Explosions in Anhui and the Periphery[J]. Journal of Institute of Disaster-Prevention Science and Technology,12 (2):26-31.
[17] Wang S J,Yang Z F,Liu Z H. 1984. Analysis on surrounding rock stability for underground projects[M]. Beijing:Science Press:282.
[18] Wenling City TAB. 2008. The demystify of the forming reason for Changyu Dongtian[J]. Landscape & Historic Sites,(5):68-71.
[19] Yang Q Y,Chen X C,Ma W T, et al. 1993. Formation mechanism of microearthquakes warm in Yanguan area on the Yangtze Gorges[J]. Seismology and Geology,15 (3):247-252.
[20] Yao H. 1989. Preliminary geotechnical investigation of the collapse earthquake in Yangshuo, 1987[J]. Seismological and Geomagnetic Observation and Research,(5):5-7.
[21] Zhang L F,Yao Y S,Li J G,et al. 2013. Corner frequency characteristic of tectonic earthquakes and collapsed ones in Three Gorges region[J]. Journal of Geodesy and Geodynamics,33 (2):27-40.
[22] Zhang Z D,Zheng J H,Jing J C,et al. 1991. Effect of the collapse earthquake induced in the mine of Taozhuang at the water level of pressure well[J]. South China Journal of Seismology,11 (4):75-82.
[23] 程海勇,吴爱祥,韩斌,等. 2016. 露天-地下联合开采保安矿柱稳定性[J]. 中南大学学报(自然科学版),47(9):3183-3192.
[24] 高宇,曹明明,戴慧芳,等. 2014. 陕西省榆林地区塌陷地震灾害预测研究[J]. 自然灾害学报,23(3):213-221.
[25] 谷德振. 1979. 岩体工程地质力学基础[M]. 北京:科学出版社:204-207.
[26] 胡炳南,江中乐,郭文砚. 2017. 曲江煤矿地表塌陷成因时空关系分析[J]. 煤炭科学技术,45(1):189-193.
[27] 王思敬,杨志法,刘竹华. 1984. 地下工程岩体稳定分析[M]. 北京:科学出版社:282.
[28] 姚宏.1989.1987年阳朔塌陷地震初探[J]. 地震地磁观测与研究, 1989, (5):5-7.
[29] 浙江省地质矿产局. 1989. 浙江省区域地质志[M]. 北京:地质出版:688.
[30] 浙江省区域地质调查大队. 1978. 区域地质调查报告:仙居幅(1:200000)[R]. 杭州:浙江省区域地质调查大队.
[1] 郑光, 许强, 巨袁臻, 李为乐, 周小棚, 彭双麒. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018, 26(1): 223-240.
[2] 杨志法, 廖小辉, 曲金中, 何万通, 方建平, 魏雪云, 罗巧慧, 包涵. 温岭长屿硐天古洞室群的科学价值分析[J]. 工程地质学报, 2017, 25(Z1): 7-14.
[3] 杨志法, 廖小辉, 曲金中, 何万通, 方建平, 魏雪云, 罗巧慧, 包涵. 温岭长屿硐天古洞室群的科学价值分析[J]. 工程地质学报, 2017, 25(s2): 58-65.
[4] 乔小龙. 大采高综放开采覆岩破坏特征和裂隙演化规律[J]. 工程地质学报, 2017, 25(3): 858-866.
[5] 贺江辉, 李文平, 代松, 谢朋. 地质构造对岩层富水性的控制作用[J]. 工程地质学报, 2016, 24(s1): 748-755.
[6] 白光顺, 张世涛, 刘渊, 杨雪梅, 朱杰勇. 基于关键层理论的盐岩单井水溶溶腔覆岩垮落带的确定[J]. 工程地质学报, 2016, 24(s1): 1152-1155.
[7] 李腾飞, 陈洪涛, 王瑞青. 湖北宜昌盐池河滑坡成因机理分析[J]. 工程地质学报, 2016, 24(4): 578-583.
[8] 白光顺, 张世涛, 朱杰勇, 张光政, 田宜敏. 用弹性圆薄板理论分析盐岩单井水溶溶腔覆岩关键层[J]. 工程地质学报, 2015, 23(4): 634-640.
[9] 祝介旺, 李丽慧, 傅燕, 田洪水, 罗巧慧, 陶晨晓, 牟会宠, 杨志法. 温岭大型古地下采石场长屿硐天凌霄硐洞室群工程地质条件评价[J]. 工程地质学报, 2014, 22(4): 772-778.
[10] 李腾飞, 李晓, 王瑞青. 地下采矿诱发斜坡移动变形分析[J]. 工程地质学报, 2014, 22(1): 64-70.
[11] 李霍, 巨能攀, 郑达, 彭红明. 贵州上洋水河流域拉裂—倾倒型崩塌机理研究[J]. 工程地质学报, 2013, 21(2): 289-296.
[12] 湛铠瑜, 岳向阳, 唐春龙. 巷道围岩松动圈影响因素的敏感性数值计算[J]. 工程地质学报, 2010, 18(S1): 93-98.
[13] 许强 黄润秋 殷跃平 侯圣山 董秀军 范宣梅 汤明高. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009, 17(4): 433-444.
[14] 杨志法, 张路青, 陶克捷, 吴吉培, 陈琪, 张中俭. 关于衢州古城墙通仙门凝灰岩砌块相对风化速度的研究[J]. 工程地质学报, 2008, 16(5): 625-629.
[15] 张周平, 高谦, 靳学奇, 肖卫国. 金川Ⅲ矿区副井工程变形分析与稳定性控制研究[J]. 工程地质学报, 2007, 15(S1): 284-289.
版权所有 © 2009 《工程地质学报》编辑部    京ICP备05029136号-13
地址:北京市朝阳区北土城西路19号  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn