首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2018, Vol. 26 Issue (1): 193-206    DOI: 10.13544/j.cnki.jeg.2018.01.021
地质灾害与浅层地球物理 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
曾庆利1,2, 魏荣强1,2, 薛鑫宇2, 周元泽1,2, 尹前锋2
1. 中国科学院计算地球动力学重点实验室 北京 100049;
2. 中国科学院大学 地球科学学院 北京 100049
ZENG Qingli1,2, WEI Rongqiang1,2, XUE Xinyu2, ZHOU Yuanze1,2, YIN Qianfeng2
1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049;
2. College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049
 全文: PDF (9106 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 2017年6月24日茂县叠溪镇新磨村发生体积近800×104 m3的灾难性特大型滑坡-碎屑流灾害。通过现场调查、遥感解译和资料分析,本文对灾害发育的地质环境条件,崩滑危岩体及运移堆积特征,降雨及地震对崩滑的触发作用等进行了研究,探讨了影响碎屑流运动性的主要效应及其致灾机理,并评价了类似灾害的监测预警新方法。研究认为:(1)新磨村位于1933年叠溪MS7.5地震前已经存在的大型老滑坡堆积体上,多次历史强震和历年降雨循环使滑源区砂板岩坡体表层卸荷带失稳剥离,内部岩体完整性和强度进一步损伤劣化,滑源区在2003年之前已经发育了多条宽大裂缝,并存在显著滑前变形前兆,新磨滑坡本质上是一次后地震机制的灾难性高速岩质滑坡-碎屑流。(2)新磨基岩顺层滑坡体积约150×104 m3,但有约600×104 m3沟道老崩坡积体被刮铲、裹携。滑坡体高位撞击使老堆积体内“土拱效应”快速丧失并获得加速,“刮铲-裹携效应”促进了滑坡-碎屑流的流动性和扩散性,但大规模的裹携也限制了碎屑流运移得更远。这种冲击加载-刮铲裹携的破坏机制与1986年新滩滑坡、2000年易贡滑坡和2004年贵州纳雍左营滑坡等类似。(3)滑坡-碎屑流产生的地震信号分析可再现整个滑坡、冲击、运移、停积等全过程,震前InSAR形变资料分析则揭示了显著的变形前兆,两者结合应是未来这类超视距崩滑-碎屑流灾害早期识别、评价和预警的新方法。(4)鉴于滑后新磨流域仍然存在大量新老裂缝及其切割而成的危险块体,建议立即开展详细的灾害调查、风险评价和监测预警工作,避免类似灾害重复发生。
E-mail Alert
关键词滑坡-碎屑流   冲击加载效应   裹携效应   InSAR变形监测   崩滑地震信号   同震及震后滑坡   1933年叠溪MS7.5地震     
Abstract: On June 24, 2017 a super-large catastrophic rock avalanche-debris flow of 800×104 m3 took place at Xinmo village, Maoxian county of Sichuan Province. Based on the field investigation, remote sensing interpretation and data analysis, the paper studies the geo-environmental conditions of the rock avalanche, the characteristics of failure, movement and deposition, and the triggering actions of rainfall and earthquakes. The main effects on mobility of rock debris and the hazardous mechanism are discussed. The new technology and method of monitoring and warning for such geohazards are evaluated. It is believed as follows. (1)Xinmo village is located in the deposit of an old large landslide before the 1933 Diexi MS 7.5 earthquake. The multiple strong historic-prehistoric earthquakes and the annual rainfall not only made the surface unloaded belt of Triassic slate slope spelled, but also damaged and weakened the rockmass integrity and strength. There have developed large tensional fissures in the ridge slope before year 2003 and existed remarkable emplacement portent before failure. Therefore, the event is essentially a post-earthquake, high speed rock avalanche-debris flow. (2)The rock avalanche is about 150×104 m3 but scratched and entrained a total of 600×104 m3 old colluviums. The huge impact on the old colluviums made the inner soil arching effect suddenly lost. The effect of entrainment of the old colluviums greatly increased their mobility and diffusion but the large entrained colluviums conversely made the whole mass not flowing further. Such a failure mechanism of impact-loading and entrainment is similar to the former landslides in Xintan, Yigong and Nayong. (3)The seismic signals generated by rock avalanche clearly display the process of collapsing, impacting, moving and depositing. The emplacement monitoring of multi-temporal InSAR data clearly displayed the displacement precursor on the slope. The combination of two technologies is a promising new method of early identification, evaluation and warning of similar landslide of ultra-sight and in difficult geo-environment. Finally, with regard to the old and new fissures and their separated blocks, it is suggested to immediately make detailed investigation, risk assessment and monitoring-warning so as to avoid similar disasters.
Key wordsRock avalanche   Impact-loading effect   Debris-entrainment effect   Emplacement monitoring by InSAR   Avalanche seismic signal   Co-seismic and post-seismic landslides   1933 Diexi MS7.5 earthquake   
收稿日期: 2017-08-08;


作者简介: 曾庆利(1973-),男,博士,副教授,主要从事工程地质及地质灾害演化与防治方面的教学、研究工作.Email:zengql@ucas.ac.cn
. 茂县新磨特大滑坡-碎屑流的发育特征与运移机理[J]. 工程地质学报, 2018, 26(1): 193-206.
[1] Allstadt K. 2013. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms[J]. Journal of Geophysical Research Earth Surface, 118(3):1472-1490.
[2] An W P,Zhao J Q,Yan X B,et al. 2008. Tectonic deformation of lacustrine sediments in Qiangyang on the Minjiang fault zone and ancient earthquake[J]. Seismology and Geology,30 (4):980-988.
[3] Chang L Q. 1938. Investigation report Diexi earthquake of Sichuan[J]. Geological Review,3 (3):251-291.
[4] Chen C H,Chao W A,Wu Y M, et al. 2013. A seismological study of landquakes using a real-time broad-band seismic network[J]. Geophysical Journal International,194(2):885-898.
[5] Chen Z F,Kong J M,Wang C H. 2006. Characteristics of the falling-slide type landslide in Nayong in Guizhou province and the lessons learned for disaster mitigation in other areas[J]. The Chinese Journal of Geological Hazard and Control, 17 (3):32-35.
[6] Cheng Q G,Zhang Z Y,Cui P. 2004. Dynamical mechanism and stability criterion of landslide under lockup of soil arching[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (17):2855-2864.
[7] Dammeier F,Moore J R,Haslinger F,et al. 2011. Characterization of alpine rockslides using statistical analysis of seismic signals[J]. Journal of Geophysical Reaearch,116(116):4042.
[8] Hong S Z,Liu S L,Xu J T,et al. 2011. Interpretation and research on photographs about Diexi earthquake shoot by Zhuang Benxue in 1934[J]. Seismology and Geology, 33 (1):208-214.
[9] Huang R Q,Pei X J,Li T B. 2008. Basic characteristics and formation mechanism of the largest scale landslide at Daoguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology,16 (6):730-741.
[10] Huang R Q,Pei X J,Cui S H. 2016. Cataclastic characteristics and formation mechanism of rock mass in sliding zone of Daguangbao landslide[J]. Chinese Journal of Rock Mechanism and Engineering,35 (1):1-15.
[11] Huang Z Z,Tang R C,Liu S L. 2002. Re-discussion of the seismogenic structure of the Diexi large earthquake in 1933 and the arc tectonics on Jiaochang, Sichuan province[J]. Earthquake Research in China,18 (2):183-192.
[12] Hungr O,Evans S G. 2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 116(9-10):1240-1252.
[13] King J. 1996. Tsing Shan Debris Flow[R]. Hong Kong:Hong Kong Government, Geotechnical Engineering Office, Special Project Report SPR 6/96:133.
[14] Legros F. 2002. The mobility of long-runout landslides[J]. Engineering Geology, 63(3):301-331.
[15] Li C Y,Wang J W. 2017. Is Maoxian collapse a post-trouble of big earthquake?[N/OL]. China Science Daily, (2017-06-26)(01)[2017-08-07]. http://news.sciencenet.cn/,(2017-06-26).
[16] Li T C. 1979. The relationship between earthquakes and landslides and explore seismic landslide forecast[C]//Landslide Anthology, Episode 2.Beijing:China Railway Press:127-132.
[17] Li Y H,Jiang H C,Xu H Y,et al. 2015. Analysis on the triggering factors of large quantities of landslides in the upper reaches of the Minjiang river, Sichuan Province[J]. Seismology and Geology,37 (4):1147-1161.
[18] Liu C Z,Guo Q,Chen H Q. 2004. Primary analysis to Yanjiaozhai collapse in Nayong county, Guizhou province[J]. The Chinese Journal of Geological Hazard and Control, 15(4):1.
[19] Manconi A,Picozzi M,Coviello V,et al. 2016. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks[J]. Geophysical Research Letters, 43(13):6960.
[20] Massonnet D,Rossi M,Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364:138-142.
[21] McDougall S,Hungr O. 2005. Dynamic modeling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42 (5):1437-1448.
[22] Metternicht G,Hurni L,Gogu R. 2005. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J]. Remote Sensing of Environment,98 (2):284-303.
[23] Nicoletti P G,Sorriso-Valvo M. 1991. Geomorphic controls of the shape and mobility of rock avalanches[J]. Geological Society of America Bulletin, 103(10):1365-1373. 2.3.CO;2 target="_blank">
[24] Qian H,Zhou R J,Ma S H,et al. 1999. South segment of Minjiang fault and Diexi earthquake in 1993[J]. Earthquake Research in China,15 (4):333-338.
[25] Qiao J P. 1994. Study on the regularities governing the density distribution of collapses and landslides on the upper Mingjiang River Basin[J]. Resources and Environment in the Yangtze Valley,3 (4):365-370.
[26] State Key Laboratary of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology). 2017-08-08. Brief report of Maoxian landslide-SKLGP completely involved in the emergency work of the 6.24 Xinmo super-large landslide, Maoxian[EB/OL]. 2017-07-07. http://www.sklgp.com/default.aspx?id:98&subid:2&newsid=1996.6(81):1-7.
[27] Sun G Z,Yao B K. 1988. Landslide geology disaster and landslide investigation in China[M]//Typical Slopes in China. Beijing:Science Press:1-11.
[28] Tang R C,Jiang N Q,Liu S L. 1983. Recognition of the geological setting and the seismogenic condition for the Diexi magnitude 7.5 earthquake[J]. Journal of Seismological Research,6 (3):327-338.
[29] Wang L S,Yang L Z,Wang X Q,et al. 2005. Discovery of huge ancient dammed lake on upstream of Minjiang river in Sichuan, China[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 32 (1):1-12.
[30] Wang L S,Zhan Z,Su D G,et al. 1988. The preliminary studies of Xintan landslide's development characteristic and the mechanism of the starting and motioning and stopping[M]//Typical Slopes in China. Beijing:Science Press:211-217.
[31] Wang P,Zhang B,Qiu W L,et al. 2011. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet[J]. Journal of Asian Earth Sciences,40:865-872.
[32] Wang X Q,Wang L S. 2013. The pollen and spore characteristics of the Diexi ancient dammed lake on the upstream of Minjiang river[J]. Earth Science-Journal of China University of Geosciences,38 (5):975-982.
[33] Xu C,Xu X W,Wu X Y,et al. 2013. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology,21 (1):25-44.
[34] Xu W Y,Zhang N,Wang Y M,et al. 1992. The combined movement of collapse impulsion and slope sliding[J]. Site Investigation Science and Technology,(6):22-25.
[35] Xu X N,Wang L S. 2005. On the mechanism of slope deformation-failures and their distribution characteristics in a high earthquake-intensity area[J]. Journal of Engineering Geology,13 (1):68-75.
[36] Xu Q,Shang Y J,Asch T,et al. 2012. Observations from the large, rapid Yigong rock slide-debris avalanche, southeast Tibet[J]. Canadian Geotechnical Journal, 49(5):589-606.
[37] Yang J B. 1994. Discussion on the action of underground water and uploading of rock avalanche to the upper part of Xitan landslide[J]. Hydrogeology and Engineering Geology, (5):26-29.
[38] Yang Y C,Li B Y,Yin Z S,et al. 1985. Geomorphology in Tibet[M]. Beijing:Science Press, 52-60.
[39] Yin Y P. 2009. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology,17 (1):29-38.
[40] Zhang Y Q,Li J,Li H L,et al. 2016. Reinvestigation on seismogenic structure of the 1933 Diexi MS7.5 earthquake, eastern margin of the Xizang(Tibetan)plateau[J]. Geological Review,62 (2):267-276.
[41] Zhang Z Y,Wang S T,Wang L S. 1993. Analytical Principle of Engineering Geology[M]. Beijing:Geological Press.
[42] Zhao C,Lu Z,Zhang Q,et al. 2012. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment,124:348-359.
[43] Zhao X L,Deng Q D,Chen S F. 1994. Tectonic geomorphology of the Minshan uplift in western Sichuan, southwestern China[J]. Seismology and Geology,16 (4):429-439.
[44] 地质灾害防治与地质环境保护国家重点实验室(成都理工大学). 2017. 茂县专项简报[EB/OL]. 2017-07-07. http://www.sklgp.com/default.dspx?id=98&subid-2&newsid=1996.
[45] 李晨阳,王佳雯. 2017. 茂县垮塌是大地震后患吗?[N/OL]. 中国科学报(2017-06-26)(01)[2017-08-07]),http://news.sciencenet.cn/, 2017-06-26.
[46] 李天池. 1979. 地震与滑坡的关系及地震滑坡预测探讨[M]//滑坡文集,第2集:北京:中国铁道出版社:127-132.
[47] 刘传正,郭强,陈红旗. 2004. 贵州省纳雍县岩脚寨危岩崩塌灾害成因初步分析[J]. 中国地质灾害与防治学报, 15(4):1.
[48] 孙广忠,姚宝魁. 1988. 中国滑坡地质灾害及其研究[M]//中国典型滑坡. 北京:科学出版社:1-11.
[49] 王兰生,詹铮,苏道刚,等. 1988. 新滩滑坡发育特征和启动、滑动及制动机制的初步研究[M]//中国典型滑坡. 北京:科学出版社:211-217.
[50] 许冲,徐锡伟,吴熙彦,等. 2013. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J], 工程地质学报, 21 (1):25-44.
[51] 杨逸畴,李炳元,尹泽生,等. 1985. 西藏地貌[M]. 北京:科学出版社:52-60.
[52] 张倬元,王士天,王兰生. 1993. 工程地质分析原理[M]. 北京:地质出版社.
[53] 中国地震局. 2017-08-07. 四川省阿坝州茂县发生山体垮塌,地震部门紧急联动做好救灾保障[EB/OL]. www.cea.gov.cn/publish/dizhenj/464/478/20170625155714619979767/index.html,2017-06-25.
[54] 中国地震局. 2017. http://www.cea.gov.cn/publish/dizhenj/468/553/101710/index.html,2017-08-08.(2017年8月8日四川九寨沟7.0级地震专题).
[1] 詹威威, 黄润秋, 裴向军, 李为乐. 沟道型滑坡-碎屑流运动距离经验预测模型研究[J]. 工程地质学报, 2017, 25(1): 154-163.
[2] 齐超, 邢爱国, 殷跃平, 李滨. 东河口高速远程滑坡-碎屑流全程动力特性模拟[J]. 工程地质学报, 2012, 20(3): 334-339.
[3] 余斌, 马煜, 吴雨夫. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 2010, 18(6): 827-836.
[4] 许强, 董秀军, 邓茂林, 陈龙, 胡泽铭. 2010年7 ·27四川汉源二蛮山滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2010, 18(5): 609-622.
[5] 王涛, 石菊松, 吴树仁, 张永双, 李滨, 辛鹏, 孙萍. 汶川地震触发文家沟高速远程滑坡-碎屑流成因机理分析[J]. 工程地质学报, 2010, 18(5): 631-644.
版权所有 © 2009 《工程地质学报》编辑部    京ICP备05029136号-13
地址:北京市朝阳区北土城西路19号  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn