工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2018, Vol. 26 Issue (6): 1433-1438    DOI: 10.13544/j.cnki.jeg.2017-348
岩土体工程地质 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
高水压力作用下裂隙岩体渗透性的变化研究
黄勇, 周麟桐, 周志芳
河海大学地球科学与工程学院 南京 210098
EQUATIONS FOR PERMEABILITY VARIATION OF FRACTURED ROCK MASS UNDER HIGH WATER PRESSURE
HUANG Yong, ZHOU Lintong, ZHOU Zhifang
School of Earth Science and Engineering, Hohai Unviersity, Nanjing 210098
 全文: PDF (631 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 渗透系数是表征裂隙岩体透水性能的一个重要参数,当水压力较小时,岩体的渗透系数变化不明显,但在高水压力条件下,岩体的渗透系数会发生明显变化,这给我们在进行渗流分析时带来了一定的困难,因为多数情况下是将渗透系数当作定值来计算的。在高压水条件下,基于非达西流方程,推导了裂隙岩体的渗透系数与水压力之间的表达式,并给出了常规压水或低水压力、高压压水时水力劈裂前后渗透系数的计算公式。现场压水试验结果表明,当岩体发生水力劈裂后,渗透系数增加明显,此时可以通过压水量和水压力的变化量来计算裂隙岩体的渗透系数。通过几个抽水蓄能电站的高压压水试验结果验证了裂隙岩体水力劈裂前后渗透系数的变化规律,并与实际裂隙岩体的渗透系数进行了比较,其误差在10%左右,表明本文给出的渗透系数表达式的合理性和准确性,为水利水电工程的渗流分析及渗漏量的计算提供了渗透系数选择的依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄勇
周麟桐
周志芳
关键词高压压水试验   裂隙岩体   水力劈裂   渗透系数     
Abstract: Hydraulic conductivity is an important parameter to describe the permeability characterization of fractured rock mass. It is often determined using the water pressure tests of borehole in hydraulic and hydro-power engineering. When the water pressure is very low, the permeability variation of rock mass is not obvious owing to its integrity and strength. But under high water pressure, its permeability would change obviously. The main reasons are that fractured apertures can be increased, some close fractures may be re-opened, and the small and unconnected fractures are penetrated between each other under the action of high water pressure. Changes of permeability would lead to some difficulties for seepage analysis, because hydraulic conductivity is often considered to be constant. The calculated hydraulic head and flux have great errors if the variation of permeability coefficient hasn't been considered. On the condition of high water pressure, the relationship between hydraulic conductivity of fractured rock mass and water pressure is deduced according to the Non-Darcy flow equation in this paper. Three equations for calculating hydraulic conductivity are provided here. The first equation is applied to the condition for low water pressure. The results of field water pressure test show that when the hydraulic fracturing of rock mass occurs, hydraulic conductivity increases obviously. It can be calculated through the variation of water flux and water pressure. In this paper, variation characteristics of permeability coefficient before and after hydraulic fracturing are verified using the results of high pressure water test from pumped storage power stations. Field test results are used to calculate hydraulic conductivity of rock mass. A comparison is conducted for measured and calculated hydraulic conductivity values to validate the rationality of deduced equation. The errors between measured and calculated values are less than 15 percent and the average error is about 10 percent, which show the calculated hydraulic conductivity is basically in agreement with measured value. Expressions of hydraulic conductivity provide selection criteria of seepage analysis for hydraulic and hydro-power engineering or large deep tunnel project.
Key wordsHigh water pressure test   Fractured rock mass   Hydraulic fracturing   Hydraulic conductivity   
收稿日期: 2017-07-17;
基金资助:国家自然科学基金(41572209),江苏省青蓝工程项目(2016B16073)资助
作者简介: 黄勇(1974-),男,博士,教授,主要从事水文地质、工程地质和环境地质方面的研究.Email:hyong@hhu.edu.cn
引用本文:   
黄勇,周麟桐,周志芳. 高水压力作用下裂隙岩体渗透性的变化研究[J]. 工程地质学报, 2018, 26(6): 1433-1438.
HUANG Yong,ZHOU Lintong,ZHOU Zhifang. EQUATIONS FOR PERMEABILITY VARIATION OF FRACTURED ROCK MASS UNDER HIGH WATER PRESSURE[J]. Journal of Engineering Geology, 2018, 26(6): 1433-1438.
 
没有本文参考文献
[1] 孔雪, 许肖锋, 王冬青, 闫长红, 余翔. 单井混合抽水试验分层计算含水层渗透系数测试研究[J]. 工程地质学报, 2018, 26(s1): 494-498.
[2] 王冬青, 许肖锋, 闫长红, 孔雪, 赵振华, 程琦, 石强. 基于多源水文地质信息的裂隙岩体地下水来源分析[J]. 工程地质学报, 2018, 26(s1): 587-593.
[3] 张永浩, 许肖锋, 刘勇, 司高华, 王青海. 含水率对非饱和黏土渗透与弥散特性及核素迁移的影响研究[J]. 工程地质学报, 2018, 26(s1): 657-664.
[4] 陶高梁, 吴小康, 杨秀华, 刘文生, 何俊, 陈银. 水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报, 2018, 26(5): 1243-1249.
[5] 赵建军, 严浩元, 杨昌鑫, 步凡, 李涛. 冻融作用下裂隙岩体锚固效应研究[J]. 工程地质学报, 2018, 26(5): 1257-1264.
[6] 赵梦怡, 谢强, 郭永春, 杨毅凡. 非饱和成都黏土瞬时剖面法渗透性试验研究[J]. 工程地质学报, 2018, 26(3): 620-625.
[7] 赵梦怡, 谢强, 郭永春, 杨毅凡. 非饱和成都黏土瞬时剖面法渗透性试验研究[J]. 工程地质学报, 2018, 26(3): 620-625.
[8] 赵宽耀, 许强, 张先林, 彭大雷, 亓星, 杨琴. 黑方台浅层黄土渗透特性对比试验研究[J]. 工程地质学报, 2018, 26(2): 459-466.
[9] 高燕燕, 钱会, 徐盼盼, 王海科. 延安新区马兰、离石黄土饱和渗透特性的试验研究[J]. 工程地质学报, 2017, 25(Z1): 134-138.
[10] 高燕燕, 钱会, 徐盼盼, 王海科. 延安新区马兰、离石黄土饱和渗透特性的试验研究[J]. 工程地质学报, 2017, 25(s2): 105-109.
[11] 齐俊修, 赵晓菊, 张中炎, 刘艳, 张广禹. 中粗砂渗透、渗透变形参数统计分析研究[J]. 工程地质学报, 2017, 25(s1): 147-152.
[12] 刘港, 赵海军, 马凤山, 冯雪磊, 郭捷, 王宏民. 裂隙岩体渗流应力耦合研究现状与展望[J]. 工程地质学报, 2017, 25(s1): 235-247.
[13] 王志兵, 麦棠坤, 齐程. 泥石流孕育-启动过程的细粒作用[J]. 工程地质学报, 2017, 25(s1): 357-364.
[14] 常志璐, 裴向军, 吴梦秋, 杨晴雯. 植物纤维加筋固化土抗压强度和渗透试验研究[J]. 工程地质学报, 2017, 25(4): 912-919.
[15] 原先凡, 马耀, 胡帅, 施裕兵. 玉瓦水电站闸基渗透参数取值及防渗方案设计优化研究[J]. 工程地质学报, 2016, 24(s1): 509-513.
版权所有 © 2009 《工程地质学报》编辑部    京ICP备05029136号-13
地址:北京市朝阳区北土城西路19号  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn