工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2018, Vol. 26 Issue (6): 1490-1498    DOI: 10.13544/j.cnki.jeg.2017-519
岩土体工程地质 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
颗粒破碎对钙质砂的应力-应变及强度影响研究
陈火东1,2,3, 魏厚振3,4, 孟庆山3,4, 王志兵1,2, 冯铮1,2
1. 桂林理工大学土木与建筑工程学院 桂林 541004;
2. 广西岩土力学与工程重点实验室 桂林 541004;
3. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室 武汉 430071;
4. 污染泥土科学与工程湖北省重点实验室 武汉 430071
THE STUDY ON STRESS-STRAIN-STRENGTH BEHAVIOR OF CALCAREOUS SAND WITH PARTICLE BREAKAGE
CHEN Huodong1,2,3, WEI Houzhen3,4, MENG Qingshan3,4, WANG Zhibing1,2, FENG Zheng1,2
1. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004;
2. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering Guilin University of Technology, Guilin 541004;
3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071;
4. Hubei Province key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan 430071
 全文: PDF (2757 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 压力作用下颗粒发生破碎是引起砂土力学特性变化的重要因素之一,对于钙质砂这种易破碎的材料更是如此。为进一步弄清颗粒破碎对钙质砂的应力-应变强度影响,本文对钙质砂进行三轴固结排水剪切试验得到应力-应变曲线,并筛分得到三轴试验前后钙质砂颗分曲线。通过引入Hardin定义的颗粒相对破碎率Br,分析了相对密度、围压与颗粒破碎的关系及颗粒破碎对钙质砂应力-应变和抗剪强度的影响。结果表明:随围压的增大颗粒破碎增量逐渐减小,直到破碎达到一个上限值,此时围压和相对密度对颗粒破碎影响很小;颗粒间的滑动标志着应力达到极限状态,而颗粒破碎会阻碍应力达到极限状态,在本实验中,低围压时颗粒破碎少,颗粒相对运动形式为滑移,使应力-应变曲线为软化型,高围压下颗粒破碎严重,颗粒破碎在剪切过程中始终发生,使应力-应变曲线呈应变硬化型;颗粒破碎使体变从剪胀逐渐发展到剪缩,且破碎越严重剪缩越严重;在低围压下钙质砂强度主要由剪胀和咬合提供,高围压下颗粒破碎严重,剪胀消失,咬合减小,使峰值摩擦角减小,抗剪强度降低。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈火东
魏厚振
孟庆山
王志兵
冯铮
关键词钙质砂   三轴试验   颗粒破碎   强度     
Abstract: The crushing of particles is one of the important factors that cause change of the sand mechanical properties, in particular the fragile material calcareous sand. This paper aims to further understand the effect of particle crushing on the stress-strain and shear strength of calcareous sand. It carries out a series of triaxial shear tests on calcareous sand with different relative densities under different confining pressures. It analyzes the particle size distribution curves of calcareous sand samples before and after tests. It discusses the particle breakage rules of calcareous sand as well as their influencing factors. Through triaxial tests the stress-strain curve of the calcareous sand is obtained. The relationship between relative density and particle crushing, confining pressure and particle crushing, and the effect of particle crushing on stress-strain and shear strength of calcareous sand were analyzed by introducing Hardin's relative breaking ratio Br. The results show that with the increase of confining pressure, the increment of particle shrinkage decreases gradually until the crushing reaches an upper limit. Then the confining pressure and relative density have little effect on the particle crushing. The influence degree of relative density on particle crushing is less than confining pressure. Sliding friction can bring about the stress increase to a limit state. The particle crushing result in the stress cannot reach the state. In the experimental condition, particles are less broken under low confining pressure and the relative motion form among particles is slip, so the stress-strain curve is soften strain type. Under high confining pressure the particles crushing becomes serious and occurs throughout the shear process. So the stress-strain curve is hardening strain type. Particle breakage makes the volume gradually change from the dilatancy to the shrinkage. The more serious the breakage is,the more obvious the shrinkage is. Under low confining pressure the strength of calcareous sand is mainly provided by dilatancy and interlocking. Due to the serious particles breakage under high confining pressure, the dilatancy disappears and the interlocking decreases, so the peak friction angle decreases and the shear strength reduces.
Key wordsCalcareous sand   Triaxial test   Particle breakage   Strength   
收稿日期: 2017-11-09;
基金资助:中国科学院战略性先导科技专项(XDA19060301),国家自然科学基金(41877260,41877267),中国科学院青年创新促进会(2015272),广西岩土力学与工程重点实验室课题(11-KF-07)资助
通讯作者: 魏厚振(1980-),男,博士,副研究员,主要从事珊瑚岛礁岩土力学与工程研究.Email:hzwei@whrsm.ac.cn     E-mail: hzwei@whrsm.ac.cn
作者简介: 陈火东(1992-),男,硕士生,研究方向为岩土工程.Email:hortoon@163.com
引用本文:   
陈火东,魏厚振,孟庆山等. 颗粒破碎对钙质砂的应力-应变及强度影响研究[J]. 工程地质学报, 2018, 26(6): 1490-1498.
CHEN Huodong,WEI Houzhen,MENG Qingshan et al. THE STUDY ON STRESS-STRAIN-STRENGTH BEHAVIOR OF CALCAREOUS SAND WITH PARTICLE BREAKAGE[J]. Journal of Engineering Geology, 2018, 26(6): 1490-1498.
 
没有本文参考文献
[1] 邱志刚, 张常亮, 王振宇, 魏岩朔, 李同录, 蔺晓燕. 大断面原状黄土抗拉强度试验研究[J]. 工程地质学报, 2018, 26(s1): 128-134.
[2] 张春新, 李萍, 王兴露. 抗剪强度随深度线性增长的黄土边坡稳定性分析[J]. 工程地质学报, 2018, 26(s1): 135-141.
[3] 袁志辉, 唐春, 杨普济, 帅东, 杨玲. 干湿循环下原状黄土抗压强度试验研究[J]. 工程地质学报, 2018, 26(s1): 155-161.
[4] 翟晓荣, 吴基文, 王广涛, 郑顺喜. 基于套筒致裂法的煤体抗拉强度测试研究[J]. 工程地质学报, 2018, 26(s1): 430-434.
[5] 张年学, 李守定, 盛祝平. 用抗剪强度参数估算抗拉强度的方法与问题讨论[J]. 工程地质学报, 2018, 26(s1): 446-456.
[6] 许家宁, 邓亚虹, 徐召, 居阳, 李清照. 三轴试验非饱和土体积变化测量方法综述[J]. 工程地质学报, 2018, 26(s1): 499-504.
[7] 贾宁, 湛川, 孟庆辉, 孙怀军. 埋置深度对T型触探贯入阻力影响研究[J]. 工程地质学报, 2018, 26(s1): 513-517.
[8] 邓文杰, 杨福荣, 胡海燕, 何立文, 黎成财. 颗粒级配对煤矸石强度变形特性的影响[J]. 工程地质学报, 2018, 26(s1): 566-571.
[9] 刘晓京, 陈新建, 冯满, 龚芯磊. 可溶盐对原状黄土强度影响的试验研究[J]. 工程地质学报, 2018, 26(s1): 652-656.
[10] 龚乐宗, 白汉营, 高宇豪, 张雨昕, 邓显瑜. 基于正交试验法的纳米石墨粉红黏土抗剪强度试验研究[J]. 工程地质学报, 2018, 26(s1): 697-703.
[11] 徐永福. 基于颗粒破碎的粗粒土剪切强度的模拟分析[J]. 工程地质学报, 2018, 26(6): 1409-1414.
[12] 张先伟, 孔令伟, 李宏程, 翟路平, 王占高, 刘新宇. 津巴布韦泥岩残积土的工程地质特性及其微观机制[J]. 工程地质学报, 2018, 26(6): 1424-1432.
[13] 朱赛楠, 殷跃平, 李滨. 大型层状基岩滑坡软弱夹层演化特征研究——以重庆武隆鸡尾山滑坡为例[J]. 工程地质学报, 2018, 26(6): 1638-1647.
[14] 裴振伟, 侯天顺, 骆亚生. EPS颗粒混合轻量土无侧限抗压强度特性试验研究[J]. 工程地质学报, 2018, 26(6): 1454-1462.
[15] 慕焕东, 邓亚虹, 李荣建. 干湿循环对地裂缝带黄土抗剪强度影响研究[J]. 工程地质学报, 2018, 26(5): 1131-1138.
版权所有 © 2009 《工程地质学报》编辑部    京ICP备05029136号-13
地址:北京市朝阳区北土城西路19号  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn