工程地质学报
     首页 |  期刊简介 |  编委会 |  投稿指南 |  期刊订阅 |  留言板 |  联系我们 |  广告合作 |  会议信息 |  English
工程地质学报  2018, Vol. 26 Issue (6): 1657-1665    DOI: 10.13544/j.cnki.jeg.2017-473
重大工程实践 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
带多阳角的综合管廊垂直交叉节点深基坑的坑角效应分析
豆红强1,2, 王浩1,2, 吴福宝3, 席人双3
1. 福州大学环境与资源学院 福州 350116;
2. 地质工程福建省高校工程研究中心 福州 350116;
3. 中铁第四勘察设计院集团有限公司 武汉 430063
CORNER EFFECTS OF DEEP EXCAVATIONS WITH MULTI EXPOSED CORNERS IN SQUARE CROSSING OF UTILITY TUNNEL
DOU Hongqiang1,2, WANG Hao1,2, WU Fubao3, XI Renshuang3
1. College of Environment and Resources, Fuzhou University, Fuzhou 350116;
2. Geological Engineering Research Center, Fujian Provincial University, Fuzhou 350116;
3. China Railway SiYuan Survey and Design Group Co., Ltd., Wuhan 430063
 全文: PDF (2561 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 坑角效应是基坑空间效应的重要体现形式之一,但目前对带多阳角深基坑的坑角效应还缺乏具体且深入的研究。以海南滨海软土地区两垂直相交的综合管廊狭长深基坑工程为依托,利用Plaxis 3D建立了两种典型施工模式下带多阳角的综合管廊交叉节点深基坑开挖的三维数值模型,对由开挖引起的地表沉降、支护结构变形以及支撑轴力等开展了细致的对比分析,并着重探讨了坑角效应对其分布形态的影响。计算结果表明:在两种典型施工模式下,综合管廊狭长深基坑的地表最大沉降变化区间约为0.11%He~0.67%He,且支护结构的最大侧向变形与开挖深度之间的上下限值分别为0.25% He、1.35%He。整体而言,在完全对称的施工模式Ⅱ下,基坑周围土体的地表最大沉降和支护结构的侧向变形均低于施工模式Ⅰ的计算结果;但在施工模式Ⅱ下,基坑开挖过程中在阳角的两个临空面方向均表现为显著的坑角效应,而在施工模式Ⅰ下,仅在阳角形成之后的单一方向上表现为明显的坑角效应。坑角效应的影响范围约为2倍的开挖深度,在坑角效应的影响范围内,基坑周围土体的地表沉降、支护结构的侧向变形以及支撑轴力均较坑角效应影响范围以外的计算结果显著降低。研究认为,若在带多阳角的综合管廊交叉节点处的深基坑设计中合理考虑坑角效应的影响范围及其发挥程度,可在一定程度上降低工程成本。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
豆红强
王浩
吴福宝
席人双
关键词综合管廊   深基坑   多阳角   坑角效应   数值模拟     
Abstract: The corner effect is one of the important forms of the spatial effect in deep excavations. However, the corner effects of the deep excavation with multi exposed corners have not been widely investigated and addressed in the previous literature. Based on the long and narrow deep excavation project of two square crossing of utility tunnels in a soft ground of Hainan, three dimensional numerical models of two typical construction programs are established using a commercial finite element software Plaxis 3D. Comparison and analysis of ground settlement caused by excavation, the deformation of the support structure, and the supporting axial force are performed. At the same time, the impacts of the corner effect on the distribution characteristics of these aforementioned studies are further discussed. The calculated results show that the maximum ground surface settlement of the long and narrow deep excavation for the utility tunnel varies between 0.11% He~0.67% He(He is excavation depth) under the two typical construction modes. The reasonable upper and lower bounds among the maximum lateral displacement of the steel sheet pile and excavation depth are 0.25% He and 1.35% He,respectively. On the whole, the maximum ground settlement of the soil around the excavation and lateral deformation of the supporting structure under the circumstance of construction program Ⅱ are lower than that in the condition of construction program Ⅰ. During the excavation process, it is worth noting that both two free surfaces of the exposed corner all have the remarkable corner effects under the circumstance of construction program Ⅱ, while the exposed corners in only one direction show the obvious corner effects under the circumstance of the construction program Ⅰ after their formation. The range of influence of the corner effects is approximately 2 times excavation depths. Within that range, the ground settlement, the deformation of the supporting structure and strut axial forces are all significantly lower than those in areas exceeding the coverage of the corner effects. The study suggests that if the influence of the corner effects and the degree of exertion are properly considered in the design of deep foundation pits with multi exposed corners at the intersections of utility tunnels, the project cost can be reduced to some extent.
Key wordsUtlity tunnel   Deep excavation   Multi exposed corners   Corner effects   Numerical simulation   
收稿日期: 2017-10-09;
基金资助:福建省自然科学基金项目(2017J05061),国土资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放基金(FJKLGH2017K006)资助
通讯作者: 王浩(1978-),男,博士,副教授,从事边坡工程及地质灾害防治方面的研究.Email:h_wang@126.com     E-mail: h_wang@126.com
作者简介: 豆红强(1987-),男,博士,讲师,主要从事岩土工程与工程地质的教学与研究工作.Email:douhq@fzu.edu.cn
引用本文:   
豆红强,王浩,吴福宝等. 带多阳角的综合管廊垂直交叉节点深基坑的坑角效应分析[J]. 工程地质学报, 2018, 26(6): 1657-1665.
DOU Hongqiang,WANG Hao,WU Fubao et al. CORNER EFFECTS OF DEEP EXCAVATIONS WITH MULTI EXPOSED CORNERS IN SQUARE CROSSING OF UTILITY TUNNEL[J]. Journal of Engineering Geology, 2018, 26(6): 1657-1665.
 
没有本文参考文献
[1] 马凤山, 卢蓉, 郭捷, 邹龙, 寇永渊. 金川二矿区大体积充填体变形的三维数值模拟[J]. 工程地质学报, 2019, 27(1): 14-20.
[2] 胡卸文, 梅雪峰, 杨瀛, 罗刚, 吴建利. 落石冲击荷载作用下的桩板拦石墙结构动力响应[J]. 工程地质学报, 2019, 27(1): 123-133.
[3] 李昺, 唐辉明, 龚文平, 谭钦文, 章广成. 某真实水文年的黄土坡临江Ⅰ号滑坡体稳定性分析[J]. 工程地质学报, 2018, 26(s1): 167-173.
[4] 王浩, 刘盈君, 王双. 深基坑开挖围护对既有地铁隧道的影响分析[J]. 工程地质学报, 2018, 26(s1): 189-195.
[5] 叶懿尉, 王汉勋, 耿招, 张彬. 公路隧道穿越铁矿采空区围岩稳定性分析[J]. 工程地质学报, 2018, 26(s1): 196-201.
[6] 康向阳, 刘妮娜, 李俊, 赵腾, 谢小丽. 地震作用下平行地裂缝场地隧道动力响应分析[J]. 工程地质学报, 2018, 26(s1): 254-259.
[7] 张永强, 毛彦龙, 陈冲. 深基坑支护对邻近建筑物基础稳定性的数值模拟分析[J]. 工程地质学报, 2018, 26(s1): 310-315.
[8] 乐天呈, 顾颖凡, 刘春, 秦岩. 级配与颗粒形态对砂土压缩性影响的试验和离散元数值模拟[J]. 工程地质学报, 2018, 26(s1): 539-546.
[9] 吕高乐, 易领兵, 王宝, 盖文, 余巍巍, 吕新春. 黄河冲积平原复杂地质环境下双排桩支护结构的深基坑监测分析[J]. 工程地质学报, 2018, 26(s1): 730-739.
[10] 徐永福. 基于颗粒破碎的粗粒土剪切强度的模拟分析[J]. 工程地质学报, 2018, 26(6): 1409-1414.
[11] 郭静芸, 王宇. 水力裂缝沟通天然裂缝活化延伸的机理研究[J]. 工程地质学报, 2018, 26(6): 1523-1533.
[12] 汤碧辉, 孙红月, 胡杭辉, 吴纲, 翁杨. 黏性泥石流对球型大颗粒启动的临界条件分析[J]. 工程地质学报, 2018, 26(6): 1631-1637.
[13] 闫钰丰, 黄强兵, 杨学军, 王平. 地下综合管廊穿越地裂缝变形与受力特征研究[J]. 工程地质学报, 2018, 26(5): 1203-1210.
[14] 李世贵, 黄达, 石林, 王俊杰. 基于极限应变判据-动态局部强度折减的边坡破坏演化数值模拟[J]. 工程地质学报, 2018, 26(5): 1227-1236.
[15] 王燚钊, 崔振东, 李明, 韩伟歌, 张建勇. 三点弯曲条件下薄层状岩体单层厚度对裂纹扩展路径的影响[J]. 工程地质学报, 2018, 26(5): 1326-1335.
版权所有 © 2009 《工程地质学报》编辑部    京ICP备05029136号-13
地址:北京市朝阳区北土城西路19号  邮政编码:100029
电话:010-82998121 ,82998124   传真:010-82998121 Email:gcdz@mail.igcas.ac.cn