CO2压裂-置换-驱替提升页岩气采收率相关研究进展

    RESEARCH PROGRESS ON CO2 FRACTURING, REPLACEMENT AND DISPLACEMENT TO ENHANCE THE SHALE GAS RECOVERY

    • 摘要: CO2压裂-置换-驱替是提升页岩气采收率的重要方法。这项技术既可以进行储层压裂,同时置换CH4,实现提高页岩气采收率,又能进行CO2封存。因此,对现有CO2压裂-置换-驱替相关技术成果进行总结认识对于该领域的下一步研究非常重要。本文以科学机理的角度从超临界CO2压裂、CO2置换CH4、CO2驱替CH4以及CO2压裂-置换-驱替联合技术提高页岩气采收率的相关科学问题4个方面展开综述。结果表明:该技术具有绿色、清洁、环保、节约资源等特点;超临界CO2压裂相较于水力压裂具有降低岩石强度、保持黏土矿物稳定、增加孔隙压力、相变致裂和产生热应力5种优势;CO2相较于CH4具有分子直径小、吸附温度低、自扩散系数小以及具有四极距性质等优势,CO2分子通过竞争吸附实现对CH4分子的置换;CO2在压力作用下驱替CH4分子,该过程受到温度、压力、孔径等多因素影响;目前,存在超临界CO2增黏问题、CO2/CH4竞争吸附过程微观机理问题、吸附位点量化问题、CO2驱替CH4过程的渗流机理与力学机理问题、储层改性问题、CO2地质封存与监测等问题有待深入研究。CO2压裂-置换-驱替联合技术具有广阔前景,是缓解能源压力,助力实现“双碳”目标的重要技术。

       

      Abstract: CO2 fracturing, replacement, and displacement are critical methods for enhancing shale gas recovery. This technology enables reservoir fracturing and CH4 displacement, thereby improving shale gas production while achieving CO2 geological storage. It is therefore essential to summarize and understand existing technical advances in CO2 fracturing, replacement, and displacement to guide future research in this field. This paper presents a review from the perspective of scientific mechanisms, covering supercritical CO2 fracturing, CO2 replacement of CH4, CO2 displacement of CH4, and key scientific issues related to enhancing shale gas recovery via the integrated CO2 fracturing-replacement-displacement technology. The results indicate that this integrated technology is characterized as green, clean, environmentally friendly, and resource-efficient. Supercritical CO2 fracturing offers several advantages over hydraulic fracturing, including reduced rock strength, maintained stability of clay minerals, increased pore pressure, phase transition-induced fracturing, and thermal stress cracking. Furthermore, compared to CH4, CO2 exhibits a smaller molecular diameter, lower adsorption temperature, smaller self-diffusion coefficient, and quadrupole moment characteristics. CO2 molecules can replace adsorbed CH4 through competitive adsorption, and CO2 can displace CH4 under pressure—a process influenced by factors such as temperature, pressure, and pore diameter. Currently, further research is needed in areas such as viscosity enhancement of supercritical CO2, the microscopic mechanism of CO2/CH4 competitive adsorption, quantification of adsorption sites, flow and mechanical mechanisms of CO2 displacement of CH4, reservoir modification, and CO2 geological storage and monitoring. The combined CO2 fracturing-replacement-displacement technology shows great promise as a crucial method for alleviating energy pressure and contributing to the achievement of carbon peaking and carbon neutrality goals.

       

    /

    返回文章
    返回