基于SBAS-InSAR技术的中巴公路(公格尔墓士塔格段)地质体缓慢变形识别研究

李凌婧 姚鑫 张永双 凌盛 王宗盛

李凌婧, 姚鑫, 张永双, 凌盛, 王宗盛. 2014: 基于SBAS-InSAR技术的中巴公路(公格尔墓士塔格段)地质体缓慢变形识别研究. 工程地质学报, 22(5): 921-927. doi: 10.13544/j.cnki.jeg.2014.05.22
引用本文: 李凌婧, 姚鑫, 张永双, 凌盛, 王宗盛. 2014: 基于SBAS-InSAR技术的中巴公路(公格尔墓士塔格段)地质体缓慢变形识别研究. 工程地质学报, 22(5): 921-927. doi: 10.13544/j.cnki.jeg.2014.05.22
LI Lingjing, YAO Xin, ZHANG Yongshuang, LING Sheng, WANG Zongsheng. 2014: SBAS-INSAR TECHNOLOGY BASED IDENTIFICATION OF SLOW DEFORMATION OF GEOLOGIC MASS ALONG SECTION OF CHINA-PAKISTAN HIGHWAY. JOURNAL OF ENGINEERING GEOLOGY, 22(5): 921-927. doi: 10.13544/j.cnki.jeg.2014.05.22
Citation: LI Lingjing, YAO Xin, ZHANG Yongshuang, LING Sheng, WANG Zongsheng. 2014: SBAS-INSAR TECHNOLOGY BASED IDENTIFICATION OF SLOW DEFORMATION OF GEOLOGIC MASS ALONG SECTION OF CHINA-PAKISTAN HIGHWAY. JOURNAL OF ENGINEERING GEOLOGY, 22(5): 921-927. doi: 10.13544/j.cnki.jeg.2014.05.22

基于SBAS-InSAR技术的中巴公路(公格尔墓士塔格段)地质体缓慢变形识别研究

doi: 10.13544/j.cnki.jeg.2014.05.22
基金项目: 

自然科学基金项目(编号:40902059),中国地质调查局工作项目(编号:12120114001401)资助

详细信息
    作者简介:

    李凌婧,女,在读硕士研究生,研究方向为InSAR在工程地质中的应用. Email:lilingjing123_123@163.com

    通讯作者:

    姚鑫(1978- ),男,博士,副研究员,主要从事新构造运动与地质灾害方面的研究工作. Email: yaoxinphd@163.com

  • 中图分类号: P642

SBAS-INSAR TECHNOLOGY BASED IDENTIFICATION OF SLOW DEFORMATION OF GEOLOGIC MASS ALONG SECTION OF CHINA-PAKISTAN HIGHWAY

  • 摘要: 中巴公路沿线地质灾害多发,通过微小变形对于其沿线地质灾害进行早期识别是一种重要的防灾措施。本文以中巴公路公格尔山至墓士塔格山段为研究区,选用2007年7月12日至2011年1月20日获取的16景PALSAR合成孔径雷达数据,采用小基线集干涉测量技术(SBAS-InSAR,Small Baseline Subset Interferometric Synthetic Aperture Radar)进行了变形干涉计算,识别并分析了沿线地质体的变形情况:(1)冰川运动与冰川泥石流作为沿线最主要的地质灾害,变形相对较大,较易识别,有效PS点主要分布在前缘冰碛物部分,反映为正负大变形相间的高异常值点团,其中公格尔山与墓士塔格山山麓的冰碛物运动最为显著; (2)沿线较软弱顺坡结构岩体发育,且风化严重,稳定性较差,易形成溜石坡灾害,表现为顺坡负异常变形; (3)宽谷区PS点变形以正值和较小的负值为主,该区域主要为底部冰水堆积物,上部洪积物,冰川融水补给充足,土体水分含量较高,可能产生冻胀变形,同时也可能存在斜坡重力梯度方向的变形,二者变形合成在测量结果上表现为视线向的正异常; (4)中巴公路主要在湖盆和洪积扇上展布,推测由于不均匀分布软土的变形,使较为刚性的公路部分路段产生了下沉; (5)SBAS-InSAR的高精度变形观测覆盖范围广,对于线性工程周围地质体稳定性的识别具有很好的应用前景。
  • [1] 张学进. 中巴公路沿线地质灾害分布特征及防治[J]. 重庆工商大学学报(自然科学版), 2013, 30 (2): 45~50.

    Zhang Xuejin. Study on the distribution characteristics and control for geological disasters along international Karakoram Highway(KKH)[J].J Chongqing Technol Business Univ.(Nat Sci Ed), 2013, 30 (2): 45~50.

    [2] 张祥松. 喀喇昆仑公路沿线冰川的近期进退变化[J]. 地理学报, 1980, 35 (2): 149~160.

    Zhang Xiangsong. Recent changes of glacier in the Karakoram Highway[J]. Acta Geographica Sinica, 1980, 35 (2): 149~160.

    [3] 王景荣. 帕米尔高原东北边缘山区的冰川泥石流[J]. 水土保持通报, 1985, (1): 51~54.

    Wang Jingrong. The glacier debris flows on the edge of northeastern Pamir Mountain[J]. Bulletin of Soil and Water Conservation, 1985, (1): 51~54.

    [4] 王景荣. 中巴公路喀什至塔什库尔干路段冰川泥石流[J]. 冰川冻土, 1987, 9 (1): 87~95.

    Wang Jingrong. An anaysis of the harm and genesis of glacial debris flows along the China-Pakistan Highway from Kashi to Tashikuergan[J]. Journal of Glaciology and Geocryology, 1987, 9 (1): 87~95.

    [5] 廖丽萍, 朱颖彦, 杨志全, 等. 中国-巴基斯坦喀喇昆仑公路Ghulkin冰川百年进退变化[J]. 冰川冻土, 2013, 35 (6): 1391~1399.

    Liao Liping,Zhu Yingyan,Yang Zhiquan, et al. Advance and retreat fluctuation of the Ghulkin Glacier along the Karakoram Highway over hundreds years[J]. Journal of Glaciology and Geocryology, 2013, 35 (6): 1391~1399.

    [6] 胡进, 朱颖彦,杨志全,等. 中巴公路沿线冰川泥石流的形成与危险性评估[J]. 地质科技情报, 2013, 32 (6): 180~184.

    Hu Jin, Zhu Yingyan, Yang Zhiquan, et al. Formation and hazard evaluation of glacial debris flow disasters along international Karakoram Highway[J]. Geological Science and Technology Information, 2013, 32 (6): 180~184.

    [7] 袁兆德. 帕米尔活动造山带东北部大型滑坡体特征与年代[硕士学位论文][D]. 中国地震局地质研究所, 2012.

    Yuan Zhaode. Nature and timing of large landslides within an active orogeny, Ne Pamir, China[D]. Institude of Geoogy, China Earthquake Administration, 2012.

    [8] Greif V,Vlcko J.Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia[J]. Environmental Earth Sciences, 2012, 66 (6): 1585~1595.

    [9] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permeanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geosciences and Remote Sensing, 2000, 28 (5): 2202~2212.

    [10] Ferretti A,Prati C,Rocca F.Permanent scatterers in SAR intererometry[J]. IEEE Transactions on Geocsiences and Remote Sensing, 2001, 39 (1): 8~20.

    [11] Van der Kooij M. Engineering geology landslide investigations and SAR Interferometry[A]//Proceedings of FRINGE’99[C]. Liege, Belgium, 1999.

    [12] Colesanti C,Crosta G B, Ferretti A, et al. Monitoring slow mass movements with the Permanent Scatterers Technique[Z].IEEE TGARS, 2003annals.

    [13] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40 (11): 2375~2383.

    [14] 胡乐银, 张景发,商晓青. SBAS-InSAR技术原理及其在地壳形变监测中的应用[J]. 地壳构造与地壳应力文集, 2010, (0): 82~89.

    Hu Leyin,Zhang Jingfa,Shang Xiaoqing. SBAS-InSAR technology and its application in monitoring the crustal deformation[J]. Bulletin of the Institute of Crustal Dynamics, 2010, (0): 82~89.

    [15] Shanker P,Casu F,Zebker HA,et al. Comparison of persistent scatterers and small baseline time-series InSAR results: a case study of the San Francisco Bay Area[J]. Geoscience and Remote Sensing Letters, IEEE, 2011, 8 (4): 592~596.

    [16] 李珊珊, 李志伟,胡俊,等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56 (5): 1476~1486.

    Li Shanshan,Li Zhiwei,Hu Jun,et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56 (5): 1476~1486.

    [17] Strecker M R,Frisch W,Hamburgeer M W, et al. Quanternary deformation in the eastern Pamir, Tadzhikistan and Kyrgystan[J]. Tectonics, 1995, 14 : 1061~1079.

    [18] 李海兵,Franck V,许志琴,等. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 2006, 33 (2): 239~255.

    Li Haibing,Franck V, Xu Zhiqin,et al. Deformation and tectonic evolution of the Karakorum fault, western Tibet[J]. Geology in China, 2006, 33 (2): 239~255.

    [19] 崔之久. 墓士塔格—公格尔冰川的某些特点及其开放利用的条件[J]. 地理学报, 1960, 26 (1): 35~46.

    Cui Zhijiu. Some characteristics of opening and utilization conditions of glacier in Mushitage-Gonggeer[J]. Acta Geographica Sinica, 1960, 26 (1): 35~46.

    [20] 苏珍, 刘时银,王志超. 墓士塔格山和公格尔山的现代冰川[J]. 自然资源学报, 1989, 4 (3): 241~246.

    Su Zheng,Liu Shiyin,Wang Zhichao. Recent glacier in Mushitage and Gonggeer Mountains[J]. Journal of Natural Resources, 1989, 4 (3): 241~246.

    [21] 姚鑫, 张永双,熊探宇,等. 基于干涉雷达的玉树地震断裂运动模式与地震迁移趋势分析[J]. 吉林大学学报(地球科学版), 2012, 42 (2): 440~448.

    Yao Xin,Zhang Yongshuang,Xiong Tanyu,et al. Analysis of geo-seismic faults movement and aftershocks migration for Yushu Earthquake based on InSAR co-seismic deformation[J]. Journal of Jilin University(Earth Science Edition). 2012, 42 (2): 440~448.

    [22] 杨志全, 朱颖彦,廖丽萍,等. 中巴公路沿线溜石坡[J]. 地质科技情报, 2013, 32 (6): 174~179.

    Yang Zhiquan,Zhu Yingyan,Liao Liping,et al. Gravel-sliding slope along international Karakoram Highway(KKH)[J].Geological Science and Technology Information, 2013, 32 (6): 174~179.
  • 加载中
计量
  • 文章访问数:  3631
  • HTML全文浏览量:  236
  • PDF下载量:  987
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-26
  • 修回日期:  2014-08-03
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回