植物固土护坡效应的研究现状及发展趋势

付江涛 李光莹 虎啸天 栗岳州 余冬梅 朱海丽 胡夏嵩

付江涛, 李光莹, 虎啸天, 栗岳州, 余冬梅, 朱海丽, 胡夏嵩. 2014: 植物固土护坡效应的研究现状及发展趋势. 工程地质学报, 22(6): 1135-1146. doi: 10.13544/j.cnki.jeg.2014.06.018
引用本文: 付江涛, 李光莹, 虎啸天, 栗岳州, 余冬梅, 朱海丽, 胡夏嵩. 2014: 植物固土护坡效应的研究现状及发展趋势. 工程地质学报, 22(6): 1135-1146. doi: 10.13544/j.cnki.jeg.2014.06.018
FU Jiangtao, LI Guangying, HU Xiaotian, LI Yuezhou, YU Dongmei, ZHU Haili, HU Xiasong. 2014: RESEARCH STATUS AND DEVELOPMENT TENDENCY OF VEGETATION EFFECTS TO SOIL REINFORCEMENT AND SLOPE STABILIZATION. JOURNAL OF ENGINEERING GEOLOGY, 22(6): 1135-1146. doi: 10.13544/j.cnki.jeg.2014.06.018
Citation: FU Jiangtao, LI Guangying, HU Xiaotian, LI Yuezhou, YU Dongmei, ZHU Haili, HU Xiasong. 2014: RESEARCH STATUS AND DEVELOPMENT TENDENCY OF VEGETATION EFFECTS TO SOIL REINFORCEMENT AND SLOPE STABILIZATION. JOURNAL OF ENGINEERING GEOLOGY, 22(6): 1135-1146. doi: 10.13544/j.cnki.jeg.2014.06.018

植物固土护坡效应的研究现状及发展趋势

doi: 10.13544/j.cnki.jeg.2014.06.018
基金项目: 

中国科学院百人计划项目(Y110091025),长安大学西部矿产资源与地质工程教育部重点实验室开放基金(CHD2011SY016),中国科学院青海盐湖研究所青年基金项目(Y360441058)资助

详细信息
    作者简介:

    付江涛(1981-),男,博士生,主要从事环境岩土工程与岩土工程稳定性数值模拟计算研究. Email: fujiangtao865@sina.com

    通讯作者:

    胡夏嵩(1965-),男,博士,研究员,博士生导师,主要从事地质工程与环境地质方面的教学与科研. Email: huxiasong@tsinghua.org.cn

  • 中图分类号: P642

RESEARCH STATUS AND DEVELOPMENT TENDENCY OF VEGETATION EFFECTS TO SOIL REINFORCEMENT AND SLOPE STABILIZATION

  • 摘要: 近年来由于自然环境变化和人类工程实践活动的影响,水土流失、滑坡等地质灾害发生的概率逐年提高,这些灾害的发生为当地人们的生产、生活带来了一定程度的危害。利用植物固土护坡方法可有效防治上述地质灾害的发生。植物固土护坡效应主要表现在水文效应和力学效应两方面。水文效应包括植物茎叶的降雨截留作用,植物茎叶削弱雨滴溅蚀作用,植物茎叶及其腐殖质抑制地表径流作用; 力学效应包括须状根系的加筋作用、主直根系的锚固作用和水平根系的牵拉作用等。本文着重探讨了植物护坡表现在水文效应和力学效应两方面的研究现状及其发展趋势。其中,在水文效应方面,对植物茎叶降雨截留及削弱溅蚀等进行了着重探讨; 对于力学效应着重探讨了根系增强土体抗剪强度理论模型、根-土相互作用、植物固土护坡力学效应数值模拟等。在上述基础上,指出了植物固土护坡效应发展趋势,即体现在水文效应方面,需开展大气-土体-植物水分迁移对边坡稳定性影响研究; 根-土复合体强度理论模型方面,进一步探讨Wu-Waldron-Model模型和Fiber-Bundle-Model模型所适用的工况条件; 数值模拟方面,需进一步探讨在建立计算模型时应系统考虑植物根型特征、根系强度等诸因素以及这些因素对计算结果的影响; 在工程实践方面,进一步开展植物护坡方法在边坡工程中的应用,探索植物护坡在不同地质、气候和区域环境条件下的应用与维护,使植物固土护坡效应体现出水文效应、力学效应、景观效应的有机结合。
  • [1] Gary D H, Andrew T L. Biotechnical slope protection and erosion control[M]. New York: Van Nostrand Reinhold Company, 1982, 37~54.

    [2] 周德培, 张俊云. 植被护坡工程技术[M]. 北京:人民交通出版社, 2003. Zhou Depei, Zhang Junyun. The engineering technique for slope protection by vegetation[M]. Beijing: China Communication Press, 2003.

    [3] 王可钧, 李焯芬. 植物固坡的力学简析[J]. 岩石力学与工程学报, 1998, 17 (6): 687~691. Wang Kejun, Li Zhuofen. Brief mechanics analysis on bioengineering techniques for slope protection[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17 (6): 687~691.

    [4] Simon A,Collison A J C. Quantifying the mechanical and hydrologic effects of riparian vegetation on stream-bank stability[J]. Earth Surface Processes and Landforms, 2002, 27 (5): 527~546.

    [5] Rajesh R B,Shrivastva K. Biological stabilization of mine dumps: shear strength and numerical simulation approach with special reference to Sisam tree[J]. Environment Earth Sciences, 2011, 63 (1): 177~188.

    [6] Waldron L J. The shear resistance of root permeated homogeneous sands tratified[J]. Soil Science Society of America Journal, 1977, 41 (5): 843~849.

    [7] Wu T H,Mckinnell W P,Swanston D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16 (1): 19~33.

    [8] Zhang C B,Chen L H, Liu Y P, et al. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering, 2010, 36 (1): 19~26.

    [9] Hu X S, Brierley Gary, Zhu H L, et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2013, 10 (4): 668~686.

    [10] Frydman S,Operstein V. Numerical simulation of direct shear of root-reinforced soil[J]. Ground improvement, 2001, 5 (1): 41~48.

    [11] 言志信, 宋云,江平,等. 植被护坡中植物根和岩土相互作用的力学分析[J]. 应用数学和力学, 2010, 31 (5): 585~590. Yan Zhixin, Song Yun, Jiang Ping, et al. Mechanical analysis of interaction between plant roots and soil mass in slope vegetation[J]. Applied Mathematics and Mechanics, 2010, 31 (5): 585~590.

    [12] Dupuy L X, Fourcaud T, Lac P, et al. A generic 3D finite element model of tree anchorage integrated soil mechanics and real root system architecture[J]. American Journal of Botany, 2007, 94 (9): 1506~1514.

    [13] Dupuy T F,Stokes A. A numerical investigation into factors affecting the anchorage of roots in tension[J]. European Journal of Soil Science, 2005, 56 (3): 319~327.

    [14] Reubens B,Poesen J,Danjon F,et al. The role of fine coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: review[J]. Tress, 2007, 21: 385~402.

    [15] Lionel D,Thierry F,Stokes A,et al. A numerical investigation into the influence of soil type and root architecture on tree anchorage[J]. Plant and Soil, 2005, 278: 119~134.

    [16] Lamm F R,Manges H L.Partitioning of the sprinkler irrigation water by a corn canopy[J]. Transactions of the ASAE., 2000, 43 (4): 909~918.

    [17] 周跃,David W. 高山峡谷区云南松林土体侵蚀控制的水文效应[J]. 土壤侵蚀与水土保持学报, 1998, 4 (3): 31~38. Zhou Yue, David Watts. Hydrological effect of Pinus Yunnanensis forest on soil erosion control in the Alpine Gorge region[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4 (3): 31~38.

    [18] 时忠杰, 张宁南,何常清,等. 桉树人工林冠层、凋落物及土壤水文生态效应[J]. 生态学报, 2010, 30 (7): 1932~1939. Shi Zhongjie, Zhang Ningnan, He Changqing, et al. Eco-hydrological effect of the canopy, litter and soil of a eucalyptus plantation in South China[J]. Acta Ecologica Sinica, 2010, 30 (7): 1932~1939.

    [19] 余新晓. 森林植被减弱降雨侵蚀能量的数理分析[J]. 水土保持学报, 1988, 2 (2): 24~30. Yu Xinxiao. Mathematical analysis on forest vegetation abating the erosive energy of rainfall[J]. Journal of Soil and Water Conservation, 1988, 2 (2): 24~30.

    [20] Sreenivas L,Johnston J R,Hill H O. Some relationship of vegetation and soil detachment in the erosion process[C]. Soil Science Society Proceedings, 1947, 12: 471~474.

    [21] Morgan R P C. Effect of corn and soybean canopy on soil detachment by rainfall[J]. Transactions of the ASAE, 1985, 28 (4): 1135~1140.

    [22] Bosch J M,Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology, 1982, 55 (1—4): 3~23.

    [23] Quinn N W,Laflen J M. Characteristics of raindrop throughfall under corn canopy[J]. Transactions of the ASAE, 1983, 26 (5): 1445~1450.

    [24] Morgan R P C.Splash detachment under plant covers: Results and implications of a field study[J]. Transactions of the ASAE, 1982, 25 (4): 987~991.

    [25] 拜得珍, 纪中华,沙毓沧,等.“罗望子+木豆”乔灌复合模式林水土保持功能的叠加效应初探[J]. 西南农业学报, 2006, 19 (4): 611~615. Bai Dezhen, Ji Zhonghua, Sha Yucang, et al. Accumulation effects on function of the high-brush forest compound model of the“Tamarindus+Cajanus cajan”[J]. Southwest China Journal of Agricultural Sciences, 2006, 19 (4): 611~615.

    [26] 周国逸. 几种常用造林树种冠层对降水动能分配及其生态效益分析[J]. 植物生态学报, 1997, 21 (3): 250~259. Zhou Guoyi. Distribtuion of rainfall kinetic energy canopies of artificial forest tree species and its ecological effect[J]. Acta Phytoecologica Sinica, 1997, 21 (3): 250~259.

    [27] 刘昌明, 钟骏襄. 黄土高原森林对年径流影响的初步研究[J]. 地理学报, 1978, 33 (2): 112~127. Liu Changming, Zhong Junxiang. The influence of forest cover upon annual runoff in the loess plateau of China[J]. Acta Geographica Sinica, 1978, 33 (2): 112~127.

    [28] 杨亚川, 莫永京,王芝芳,等. 土体-草本植物根系复合体抗水蚀强度与抗剪强度的试验研究[J]. 中国农业大学学报, 1996, 1 (2): 31~38. Yang Yachuan, Mo Yongjing, Wang Zhifang, et al. Experimental study on anti-water erosion and shear strength of soil-root composite[J]. Journal of China Agricultural University, 1996, 1 (2): 31~38.

    [29] Pollen N, Simon A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J]. Water Resource Research, 2005, 41 (7): 25~32.

    [30] Fredlund D G,Morgenstern N R,Widger R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15 (3): 313~321.

    [31] Riestenberg M M,Sovonick-dunford S. The role of woody vegetation in stabilizing slopes in the Cincinnati area, Ohio[J]. Geological Society of America Bulletin, 1983, 94 (4): 506~518.

    [32] Greenway D R. Geotechnical engineering and geomorphology[J]. Vegetation and slope stability, 1987, 35 (14): 187~230.

    [33] Abernethy B,Rutherfurd I D. The distribution and strength of riparian tree roots in relation to riverbank reinforcement[J]. Hydrological Processes, 2001, 15 (1): 63~79.

    [34] Marco J,Van De Wiel, Stephen E D. A new model to analysis the impact of woody riparian vegetation on the geotechnical stability of river banks[J]. Earth Surface Processes and Landforms, 2007, 32 (14): 2185~2198.

    [35] Pierce F T.Tensile tests for cotton yarns. V. “the weakest link”: Theorems on the strength of long and of composite specimens[J]. Textile Inst., 1926, 17 (7): 355~368.

    [36] Daniels H E. The statistical theory of the strength of bundles of threads[C]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1945, 183 (995): 405~435.

    [37] Thomas R E,Pollen-Bankhead N. Modeling root-reinforcement with a fiber-bundle model and Monte Carlo simulation[J]. Ecological Engineering, 2010, 36 (1): 47~61.

    [38] Hidalgo R C,Kun F,Herrmann H J. Bursts in a fiber bundle model with continuous damage[J]. Physical Review E, 2001, 64 (6): 66~122.

    [39] Btaes S D,Poesen J,Reubens B,et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. Plant and Soil, 2008, 305 (1—2): 207~226.

    [40] 王芝芳, 杨亚川,赵作善,等. 土壤-草本植被根系复合体抗水蚀能力的土壤力学模型[J]. 中国农业大学学报, 1996, 1 (2): 39~45. Wang Zhifang, Yang Yachuan, Zhao Zuoshan, et al. Study on soil mechanical mechanism in anti-water erosion ability of soil-root composite[J]. Journal of China Agricultural University, 1996, 1 (2): 39~45.

    [41] Bergado D T, Chai J C,Abiera H O,et al. Interaction between cohesive-frictional soil and various grid reinforcements[J]. Geotextiles and Geomembranes, 1993, 12 (4): 327~349.

    [42] Gray D H,Al-Refeai T. Behavior of fabric-versus fiber-reinforced sand[J]. Journal of Geotechnical Engineering, 1986, 112 (8): 804~820.

    [43] 姜志强, 孙树林,程龙飞. 根系固土作用及植物护坡稳定性分析[J]. 勘察科学技术, 2005, (4): 12~14. Jiang Zhiqiang, Sun Shulin, Cheng Longfei. Analysis of roots in reinforcing soil and stabilizing slope[J]. Site Investigation Science and Technology, 2005, (4): 12~14.

    [44] Srivastava N. Influence of friction characteristic on the performance of chain CVT drives[J]. Journal of KONES Powertrain and Transport, 2006, 13 (2): 405~419.

    [45] Niu J T,Liu Z Y,Jin C,et al. Physical and numerical simulation of materials processing[M]. Switzerland: Trans. Tech. Publications Inc., 2008, 1210~1216.

    [46] Yan Z X,Song Y,Jiang P,et al. Preliminary study on interaction between plant frictional root and rock-soil mass[J]. Science China Technological Sciences, 2010, 53 (7): 1938~1942.

    [47] 邢会文, 刘静,王林和,等. 柠条、沙柳根与土及土与土界面摩擦特性[J]. 摩擦学学报, 2010, 30 (1): 87~91. Xing Huiwen, Liu Jing, Wang Linhe, et al. Friction characteristics of soil-soil interface and root-soil interface of Caragana intermedia and Salix psammophila[J]. Tribology, 2010, 30 (1): 87~91.

    [48] 张兴玲, 胡夏嵩,毛小青,等. 青藏高原东北部黄土区护坡灌木柠条锦鸡儿根系拉拔摩擦试验研究[J]. 岩石力学与工程学报, 2011, 30 (增2): 3739~3745. Zhang Xingling, Hu Xiasong, Mao Xiaoqing, et al. Research on pull-out friction test of shrub Caragana korshinskii roots for slope protection in loess area of northeast Qinghai-Tibetan Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (S2): 3739~3745.

    [49] 宋维峰, 陈丽华,刘秀萍. 根系与土体接触面相互作用特性试验[J]. 中国水土保持科学, 2006, 4 (2): 62~65. Song Weifeng, Chen Lihua, Liu Xiuping. Experiment on characteristic of interface between root system and soil[J]. Science of Soil and Water Conservation, 2006, 4 (2): 62~65.

    [50] Rees S W,Ali N. Seasonal water uptake near trees: A numerical and experimental study[J]. Geomechanics and Geoengineering, 2006, 1 (2): 129~138.

    [51] Javaux M,Schrder T,Vanderborght J,et al. Use of a three-dimensional detailed modeling approach for predicting root water uptake[J]. Vadose Zone Journal, 2008, 7 (3): 1079~1088.

    [52] Lier Q J,Metselaar K,Dam J C. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation[J]. Vadose Zone Journal, 2006, 5 (4): 1264~1277.

    [53] 莫菲. 六盘山洪沟小流域森林植被的水文影响与模拟[博士学位论文][D]. 北京:中国林业科学研究院, 2009. Mo Fei. The hydrological effects of forest/vegetation and simulation in the small watershed of Honggou, Liupan Mountains[Doctorate Thesis][D]. Beijing: Chinese Academy of Forestry, 2009.

    [54] 尹伊, 陈海山. 植被冠层截留对地表水分和能量平衡影响的数值模拟[J]. 气象学科, 2013, 33 (2): 119~129. Yi Yin, Chen Haishan. Numerical experiment of impacts of canopy interception on land surface water and energy balance[J]. Journal of the Meteorological Sciences, 2013, 33 (2): 119~129.

    [55] Lin D G,Huang B S,Lin S H. 3-D numerical investigations into the shear strength of the soil-root system of Makino bamboo and its effect on slope stability[J]. Ecological Engineering, 2010, 36 (8): 992~1006.

    [56] 李国荣, 胡夏嵩,毛小青,等. 青藏高原东北部黄土区灌木植物根系护坡效应的数值模拟[J]. 岩石力学与工程学报, 2010, 29 (9): 1877~1884. Li Guorong, Hu Xiasong, Mao Xiaoqing, et al. Numerical simulation of shrub roots for slope protection effects of loess area of northeast Qinghai-Tibetan Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (9): 1877~1884.

    [57] 肖本林, 罗寿龙,陈军,等. 根系生态护坡的有限元分析[J]. 岩土力学, 2011, 32 (6): 1881~1885. Xiao Benlin, Luo Shoulong, Chen Jun, et al. Finite element analysis of eco-protection slope through roots[J]. Rock and Soil Mechanics, 2011, 32 (6): 1881~1885.

    [58] 及金楠. 基于根-土相互作用机理的根锚固作用研究[硕士学位论文][D]. 北京:北京林业大学, 2007. Ji Jinnan. Analysis of root-soil mechanical interaction to study tree anchorage and soil reinforcement by roots[Thesis of Master[D]. Beijing: Beijing Forestry University, 2007.

    [59] 夏振尧, 周正军,黄晓乐,等. 植被护坡根系浅层固土与分形特征关系初步研究[J]. 岩石力学与工程学报, 2011, 30 (增2): 3641~3647. Xia Zhenrao, Zhou Zhengjun, Huang Xiaole, et al. Preliminary study of relationship between shallow soil reinforcement and fractal characteristics of vegetation roots in biotechnical slope protection[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (S2): 3641~3647.

    [60] 江浩浩. 基于灰色关联度和主成分分析的草本植物护坡效果评价[硕士学位论文][D]. 哈尔滨:东北林业大学, 2009. Jiang Haohao. Effect evaluation of slope protection for herbs based on the grey connection and principal component analysis[Thesis of Master][D]. Harbin: Northeast Forestry University, 2009.

    [61] 张大勇, 王冬,王建军. 基于模糊神经网络的护坡植被优选[J]. 东北林业大学学报, 2011, 39 (7): 116~119. Zhang Dayong, Wang Dong, Wang Jianjun. Selection of optimal slope protection plants based on fuzzy neural network[J]. Journal of Northeast Forestry University, 2011, 39 (7): 116~119.
  • 加载中
计量
  • 文章访问数:  5212
  • HTML全文浏览量:  328
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-14
  • 修回日期:  2014-06-10
  • 刊出日期:  2014-12-25

目录

    /

    返回文章
    返回