粗粒土大型剪切试验剪切带变形特征分析

张茜 邓辉 李强 黎志

张茜, 邓辉, 李强, 黎志. 2015: 粗粒土大型剪切试验剪切带变形特征分析. 工程地质学报, 23(1): 30-36. doi: 10.13544/j.cnki.jeg.2015.01.005
引用本文: 张茜, 邓辉, 李强, 黎志. 2015: 粗粒土大型剪切试验剪切带变形特征分析. 工程地质学报, 23(1): 30-36. doi: 10.13544/j.cnki.jeg.2015.01.005
ZHANG Qian, DENG Hui, LI Qiang, LI Zhi. 2015: ANALYSIS OF SHEAR ZONE DEFORMATION BEHAVIOR IN COARSE-GRAINED SOIL BY LARGE SCALE DIRECT SHEAR TEST. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 30-36. doi: 10.13544/j.cnki.jeg.2015.01.005
Citation: ZHANG Qian, DENG Hui, LI Qiang, LI Zhi. 2015: ANALYSIS OF SHEAR ZONE DEFORMATION BEHAVIOR IN COARSE-GRAINED SOIL BY LARGE SCALE DIRECT SHEAR TEST. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 30-36. doi: 10.13544/j.cnki.jeg.2015.01.005

粗粒土大型剪切试验剪切带变形特征分析

doi: 10.13544/j.cnki.jeg.2015.01.005
详细信息
    作者简介:

    张茜(1987-),女,硕士生,主要从事岩土体的特性研究及地质灾害防治. Email: tantaiyuxi@126.com

  • 中图分类号: P642.3

ANALYSIS OF SHEAR ZONE DEFORMATION BEHAVIOR IN COARSE-GRAINED SOIL BY LARGE SCALE DIRECT SHEAR TEST

  • 摘要: 采用含有叠环的大型粗粒土直剪试验设备进行试验,叠环作为剪切盒的重要组成部分,可以在剪切时根据粗粒土的结构形成多组剪切面,能够明显地展现出粗粒土的剪切变形特征.为了分析硬质岩粗粒对粗粒土的剪切强度和变形的影响,对粗粒岩性为花岗岩的粗粒土进行大型叠环式直剪试验.通过分析得到试验特征规律,研究粗粒土在剪切过程中的颗粒运动,得出花岗岩粗粒对其组成的粗粒土的剪切强度和变形有很大的影响.硬质岩性的花岗岩颗粒在剪切时不易被剪碎,在剪切过程中主要做错位、翻滚运动.低轴压下,剪切带位移会出现阶梯现象,而在高轴压下,剪切带位移为线性变化,并表现出更加明显的剪胀现象.粗粒土在剪切破坏后依然具有较高的抗剪强度和稳定性,为工程建设中土石体材料的选取提供了一定的借鉴.
  • BagherzadehKhalkhali A, Mirghasemi A A. 2009. Numerical and experimental direct shear tests for coarsegrained soils[J]. Particuology, 7 (1): 83~91.

    Cheng Z L, Wu L P, Ding H S. 2007. Research on movement of particle of fabric of granular material[J]. Rock and Soil Mechanics, 28(S1): 29~33.

    Ding X L, Li Y X, Wang X. 2010. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (3): 477~484.

    Guo P J, Su X B. 2007. Shear strength, interparticle locking, and dilatancy of granular materials[J]. Canadian Geotechnical Journal, 44 (5): 579~591.

    Härtl J, Ooi J Y. 2011. Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments[J]. Powder Technology, 212 (1): 231~239.

    Jia X M, Chai H J, Zheng Y R. 2010. Mesomenchanics research of large direct shear test on soil and rock aggregate mixture with particle flow code simulation[J]. Rock and Soil Mechanics, 31 (9): 2695~2703.

    Li C, He C R, Wang C, et al. 2008. Study of scale effect of large-scale triaxial test of coarsegrained materials[J]. Rock and Soil Mechanics, (S1): 563~566.

    Liu S H, Xu Y F. 2001. Numerical simulation for a direct box shear test on granular material and microscopic consideration[J]. Chinese Journal of Rock Mechanics and Engineering, 20 (3): 288~292.

    Liu Y, Lu T H. 2009. Largescale simple shear tests of particle breakage of coarsegrained soil[J]. Journal of Hohai University(Natural Sciences), 37 (2): 175~178.

    Mair K, Frye K M, Marone C. 2002. Influence of grain characteristics on the friction of granular shear zones[J]. Journal of Geophysical Research, 107 (B10): 2219.

    Ouyang Z H, Li S H, Dai Z S. 2010. On the influence factors of mechanical properties for soil-rock mixture[J]. Journal of Experimental Mechanics, 25 (1): 61~67.

    Shi C, Wang S N, Liu L, et al. 2012. Structure modeling and mechanical parameters research of outwash deposits based on digital image analysis[J]. Rock and Soil Mechanics, 23 (11): 3393~3399.

    Wang Y, Li X, He J M, et al. 2014. Research status and prospect of rock and soil aggregate[J]. Journal of Engineering Geology, 22 (1): 112~123.

    Xu W J, Xu Q, Hu R L. 2011. Study on the shear strength of soil rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 48 (8): 1235~1247.

    Xu X F, Wei H Z, Meng Q S H, et al. 2013. Dem simulation on effect of coarse gravel content to direct shear strength and deformation characteristics of coarse-grained soil[J]. Journal of Engineering Geology, 21 (2): 311~316.

    You X H, Tang J S. 2002. Research on horizontal push-shear in-situ test of soil and rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (10): 1537~1540.

    程展林, 吴良平, 丁红顺. 2007. 粗粒土组构之颗粒运动研究[J]. 岩土力学, 28 (增1): 29~33.

    丁秀丽, 李耀旭, 王新. 2010. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 29 (3): 477~484.

    贾学明, 柴贺军, 郑颖人. 2010. 土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J]. 岩土力学, 31 (9): 2695~2703.

    李翀, 何昌荣, 王琛,等. 2008. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, (增1): 563~566.

    刘斯宏, 徐永福. 2001. 粒状体直剪试验的数值模拟与微观考察[J]. 岩石力学与工程学报, 20 (3): 288~292.

    刘尧, 卢廷浩. 2009. 粗粒土大型单剪颗粒破碎试验研究[J]. 河海大学学报(自然科学版), 37 (2): 175~178.

    欧阳振华, 李世海, 戴志胜. 2010. 块石对土石混合体力学性能的影响研究[J]. 实验力学, 25 (1): 61~67.

    石崇, 王盛年, 刘琳,等. 2012. 基于数字图像分析的冰水堆积体结构建模与力学参数研究[J]. 岩土力学, 23 (11): 3393~3399.

    王宇, 李晓, 赫建明,等. 2014. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 22 (1): 112~123.

    徐肖峰, 魏厚振, 孟庆山,等. 2013. 粗粒含量对砾类土直剪过程中强度与变形特性影响的离散元模拟研究[J]. 工程地质学报, 21 (2): 311~316.

    油新华, 汤劲松. 2002. 土石混合体野外水平推剪试验研究[J]. 岩石力学与工程学报, 21 (10): 1537~1540.
  • 加载中
计量
  • 文章访问数:  2917
  • HTML全文浏览量:  232
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-04
  • 修回日期:  2014-03-27
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回