人工降雨条件下冲沟型泥石流起动试验研究

倪化勇

倪化勇. 2015: 人工降雨条件下冲沟型泥石流起动试验研究. 工程地质学报, 23(1): 111-118. doi: 10.13544/j.cnki.jeg.2015.01.016
引用本文: 倪化勇. 2015: 人工降雨条件下冲沟型泥石流起动试验研究. 工程地质学报, 23(1): 111-118. doi: 10.13544/j.cnki.jeg.2015.01.016
NI Huayong. 2015: FIELD EXPERIMENTS FOR GROOVE-TYPE DEBRIS FLOW INITIATION WITH ARTIFICIAL RAINFALL. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 111-118. doi: 10.13544/j.cnki.jeg.2015.01.016
Citation: NI Huayong. 2015: FIELD EXPERIMENTS FOR GROOVE-TYPE DEBRIS FLOW INITIATION WITH ARTIFICIAL RAINFALL. JOURNAL OF ENGINEERING GEOLOGY, 23(1): 111-118. doi: 10.13544/j.cnki.jeg.2015.01.016

人工降雨条件下冲沟型泥石流起动试验研究

doi: 10.13544/j.cnki.jeg.2015.01.016
基金项目: 

国家自然科学基金项目(41102226),科技基础性工作专项(2011FY110100-1)资助

详细信息
    作者简介:

    倪化勇(1979-),男,硕士,副研究员,主要从事泥石流灾害预测预报、评价与灾害地貌研究. Email: nihuayong@126.com

  • 中图分类号: P642.23

FIELD EXPERIMENTS FOR GROOVE-TYPE DEBRIS FLOW INITIATION WITH ARTIFICIAL RAINFALL

  • 摘要: 下垫面以位于贡嘎山东坡的熊家沟为模型,开展了不同降雨强度条件下冲沟型泥石流起动的模拟试验,初步研究了冲沟型泥石流的形成机理和演化特征.试验研究表明:(1)在强降雨条件下,水体入渗速度、不同深度土体含水量变化与降雨强度呈反比例关系,降雨强度越大,越不利于水体入渗,而有利于坡面汇流、冲沟径流和下切侵蚀; (2)在强降雨和径流条件下,土体破坏方式、破坏程度以及泥石流形成机理表现出差异性.相对较小雨强降雨条件下,土体破坏方式以滑坡为主,泥石流形成模式表现为滑坡液化与转化起动,雨强较大降雨条件下,土体破坏方式以侵蚀垮塌为主,泥石流形成模式为洪流席卷垮塌体和沟床揭底; (3)起动试验中泥石流阵性特征明显.在强降雨条件下,雨强与泥石流的规模、黏度之间没有正相关性,雨强越大,泥石流黏度越小,试验中多出现的是高含砂洪流,而相对较小雨强作用下由土体液化转化形成的泥石流黏度较大.试验现象和结果与熊家沟泥石流起动、发生过程具有较高的一致性.
  • Caine N. 1980. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler, 62A : 23~27.

    Chen N S, Zhou W, Yang C L, et al. 2010. Clay content impect on the mechanism of gravel soil failure and debris flow initiation[J]. Geomorphology, 121 : 222~230.

    Chen X Q, Cui P, Feng Z L, et al. 2006. Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (1): 106~116.

    Cong W Q, Pan M, Li T F, et al. 2006. Quantitative analysis of critical rainfalltriggered debris flows[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (S1): 2808~2812.

    Cui P. 1992. Studies on condition and mechanism of debris flow initiation by means of experiment[J]. Chinese Science Bulletin, 37 (9): 759~763.

    Guzzetti F, Peruccacci S, Rossi M, et al. 2008. The rainfall intensity duration control of shallow landslides and debris flows: An update[J]. Landslides, 5 (1):3~17.

    Hu M J, Wang R. 2003. Testing study on the correlation among landslide, debris flow and rainfall in Jiangjia valley[J]. Chinese Journal of Rock Mechanics and Engineering, 22 (5): 824~828.

    Li C, Zhu W H, Lu X B, et al. 2010. Study on landslide translating into debris flow under rainfall[J]. China Civil Engineering Journal, 43 (S): 499~505.

    Liu J J, Li Y, Cheng Z L, et al. 2008. Decaying of discharge of intermittent debris flow[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 25 (2): 177~154.

    Ni H Y, Tang C. 2014. Advances in the physical simulation experiment on debris flow initiation in China[J]. Advances in Water Science, 25 (4):606~613.

    Ni H Y, Wang D W. 2010. Present status, problem and advice on the research of prediction and forecasting of debris flow based on rainfall condition[J]. Journal of Catastrophology, 25 (1): 124~128.

    Ni H Y, Zheng W M, Li Z L, et al. 2010. Recent catastrophic debris flows in Luding county, SW China: geological hazards, rainfall analysis and dynamic characterisitcs[J]. Natural Hazards, 55 (2): 523~542.

    Wang X K, Fang D. 2000. Study on laws of debris model similarity[J]. Journal of Sichuan University(Engineering Science Edition), 32 (3): 9~12.

    Xie M S, Wang Y J, Zhang H J et al. 1993. The deposite analysis of water dynamic conditions to form debris flow and to set up mathematical model in debris flow valley[J]. Journal of Beijing Forestry University, 15 (4): 1~11.

    Xu Y N, Cao Y B, Zhang J H, et al. 2009. Research on starting of mine debris flow based on artificial simulation experiment in Xiaoqinling gold area[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (7): 1388~1395.

    Zhang L P, Tang K L, Zhang P C, et al. 1999. Experiments of artificial simulation rainfall and setting water initiating accumulated material in debris flow origin place[J]. Journal of Mountain Science, 17 (1): 45~49.

    Zhuang J, Cui P, Peng J, et al. 2013. Initiation process of debris flows on different slopes due to surface flow and trigger-specific strategies for mitigating post~earthquake in old Beichuan county, China[J]. Environmental Earth Sciences, 68 (5): 1391~1403.

    陈晓清, 崔鹏, 冯自立,等. 2006. 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报, 25 (1): 106~116.

    丛威清, 潘懋, 李铁锋,等. 2006. 降雨型泥石流临界雨量定量分析[J]. 岩石力学与工程学报, 25 (增1): 2808~2812.

    胡明鉴, 汪稔. 2003. 蒋家沟流域暴雨滑坡泥石流共生关系试验研究[J]. 岩石力学与工程学报, 22 (5): 824~828.

    李驰, 朱文会, 鲁晓兵,等. 2010. 降雨作用下滑坡转化泥石流分析研究[J]. 土木工程学报, 43 (增): 499~505.

    刘晶晶, 李泳, 程尊兰,等. 2008. 阵性泥石流的流量衰减特征[J]. 中国科学院研究生院学报, 25 (2): 177~154.

    倪化勇,唐川. 2014. 中国泥石流起动物理模拟实验研究进展[J]. 水科学进展, 25 (4):606~613.

    倪化勇, 王德伟. 2010. 基于雨量(强)条件的泥石流预测预报研究现状、问题与建议[J]. 灾害学, 25 (1): 124~128.

    王协康, 方铎. 2000. 泥石流模型试验相似律分析[J]. 四川大学学报(工程科学版), 32 (3): 9~12.

    解明曙, 王玉杰, 张洪江等. 1993. 沟道松散堆积物形成泥石流的水动力条件分析及其数学模型[J]. 北京林业大学学报, 15 (4): 1~11.

    徐友宁, 曹琰波, 张江华等. 2009. 基于人工模拟试验的小秦岭金矿区矿渣型泥石流起动研究[J]. 岩石力学与工程学报, 28 (7): 1388~1395.

    张丽萍, 唐克丽, 张平仓,等. 1999. 泥石流源地松散体起动人工降雨模拟及放水冲刷实验[J]. 山地学报, 17 (1): 45~49.
  • 加载中
计量
  • 文章访问数:  2781
  • HTML全文浏览量:  175
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-05-28
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回