PFC2D模拟裂隙岩石裂纹扩展特征的研究现状

陈鹏宇

陈鹏宇. 2018: PFC2D模拟裂隙岩石裂纹扩展特征的研究现状. 工程地质学报, 26(2): 528-539. doi: 10.13544/j.cnki.jeg.2017-039
引用本文: 陈鹏宇. 2018: PFC2D模拟裂隙岩石裂纹扩展特征的研究现状. 工程地质学报, 26(2): 528-539. doi: 10.13544/j.cnki.jeg.2017-039
CHEN Pengyu. 2018: RESEARCH PROGRESS ON PFC2D SIMULATION OF CRACK PROPAGATION CHARACTERISTICS OF CRACKED ROCK. JOURNAL OF ENGINEERING GEOLOGY, 26(2): 528-539. doi: 10.13544/j.cnki.jeg.2017-039
Citation: CHEN Pengyu. 2018: RESEARCH PROGRESS ON PFC2D SIMULATION OF CRACK PROPAGATION CHARACTERISTICS OF CRACKED ROCK. JOURNAL OF ENGINEERING GEOLOGY, 26(2): 528-539. doi: 10.13544/j.cnki.jeg.2017-039

PFC2D模拟裂隙岩石裂纹扩展特征的研究现状

doi: 10.13544/j.cnki.jeg.2017-039
基金项目: 

国家自然科学基金项目 41272377

四川省教育厅科研项目 17ZB0222

详细信息
    作者简介:

    陈鹏宇(1987-), 男, 博士, 副教授, 主要从事地质灾害分析评估、预测预报与数值模拟等方面的研究工作.Email:andycoy1@163.com

  • 中图分类号: TU45

RESEARCH PROGRESS ON PFC2D SIMULATION OF CRACK PROPAGATION CHARACTERISTICS OF CRACKED ROCK

  • 摘要: 二维颗粒流数值模拟(PFC2D)是目前研究裂隙岩石裂纹扩展特征的重要手段。在大量已有相关研究文献的基础上做了以下分析和总结:从颗粒接触本构模型、细观参数的标定和裂隙模拟方法3个方面对当前PFC2D的主要模拟方法进行了总结;根据PFC2D模拟裂隙岩石裂纹扩展特征的研究现状,重点对单裂隙、断续双裂隙岩石在不同加载方式下的裂纹扩展特征进行了深入总结。在此基础上,指出当前研究中存在如下不足:裂隙岩石的PFC2D模型未考虑断裂韧度是否符合实际、平行黏结模型模拟结果与室内试验结果存在差异、模拟裂隙与真实裂隙存在差异。结合研究中存在的不足,提出了相应的解决办法并进行展望,以期有助于裂隙岩石PFC2D模拟方法的发展。
  • 图  1  平直节理接触模型(Potyondy,2012)

    Figure  1.  Flat-jointed contact model(Potyondy, 2012)

    图  2  PFC2D中裂隙的模拟方法(陈鹏宇,2015)

    a.采用JSET命令模拟裂隙;b.采用一定厚度的颗粒模拟充填裂隙;c.删除一定厚度颗粒模拟裂缝;d.采用光滑节理模型模拟裂隙

    Figure  2.  Simulation methods of crack in PFC2D(Chen, 2015)

    图  3  单轴压缩条件下裂纹扩展方式(蒋明镜等,2012)

    Figure  3.  Propagation of a crack subjected to uniaxial compression(Jiang et al., 2012)

    图  4  裂隙岩石(裂隙倾角90°)的试验结果和模拟结果

    a.试验结果;b. Lee et al.(2011)的模拟结果;c.刘华伟等(2016)的模拟结果;d.本文模拟结果

    Figure  4.  Laboratory test and PFC2D simulation results of cracked rock(crack dip is 90°)

    图  5  裂隙岩石(裂隙倾角60°)的试验结果和模拟结果

    a.试验结果;b. Lee et al.(2011)的模拟结果;c.黄达等(2013 a)的模拟结果;d.本文模拟结果

    Figure  5.  Laboratory test and PFC2D simulation results of cracked rock(crack dip is 60°)

    图  6  非闭合裂隙岩石的PFC2D模拟结果

    a.裂隙倾角0°;b.裂隙倾角30°;c.裂隙倾角60°;d.裂隙倾角90°

    Figure  6.  PFC2D simulation results of non-closed cracked rock

    图  7  闭合裂隙岩石的PFC2D模拟结果

    a.裂隙倾角0°;b.裂隙倾角30°;c.裂隙倾角60°;d.裂隙倾角90°

    Figure  7.  PFC2D simulation results of closed cracked rock

    图  8  裂隙倾角与岩石单轴压缩强度的关系曲线

    Figure  8.  Relationship between crack dip and uniaxial compression strength of rock

    表  1  砂岩宏观参数试验值和模拟值

    Table  1.   Tested and simulated macroscopic parameters of sandstone

    试样 E50
    /GPa
    v σf
    /MPa
    σt
    /MPa
    KIC
    /MPa·m1/2
    Kimachi砂岩 13.2 0.18 66.9 4.9 0.589
    数值试样(平直节理模型) 13.1 0.17 66.8 5.0 0.552
    数值试样(平行黏结模型) 13.0 0.19 67.4 16.3 3.562
    下载: 导出CSV
  • Bobet A, Einstein H H. 1998. Fracture coalescence in rock-type material under uniaxial and biaxial compressions[J]. International Journal of Rock Mechanics and Mining Sciences, 35 (7):863-888. doi: 10.1016/S0148-9062(98)00005-9
    Cen D F, Huang D. 2014a. Mesoscopic displacement modes of crack propagation of rock mass under uniaxial compression with high strain rate[J]. Journal of China Coal Society, 39 (3):436-444.
    Cen D F, Huang D, Huang R Q. 2014b. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 36 (4):695-706.
    Cen D F. 2013. Modeling of step-path failure mechanism in rock slopes using PFC2D and evaluating on its stability[D]. Chongqing: Chongqing University.
    Chen F. 2002. The theoretical and experimental investigation on rock fracture due to shear-compression loading[D]. Changsha: Central South University.
    Chen P Y, Yu H M. 2016. Relationship between macroparameters and microparameters of flat-jointed bonded-particle material and calibration of microparameters[J]. Journal of Civil, Architectural & Environmental Engineering, 38 (5):74-83. https://www.researchgate.net/publication/311260838_Relationship_between_macroparameters_and_microparameters_of_flat-jointed_bonded-particle_material_and_calibration_of_microparameters
    Chen P Y. 2015. Characteristics Analysis of Slope Structure and Stability Study on High Rock Slope: a Case Study of the High Rock Slopes in Longsi Mine, Jiaozuo City[D]. Wuhan: China University of Geosciences.
    Chen P Y. 2017. Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and -error method[J]. Geotechnical and Geological Engineering, 35 (2):663-677. doi: 10.1007/s10706-016-0132-5
    Chen X Y. 2015. Effect of Single closed central fissure on failure characteristics of cracked rock under uniaxial compression[J]. Journal of Yangtze River Scientific Research Institute, 32 (9):104-110.
    Cho N, Martin C D, Sego D C. 2007. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 44 (7):997-1010. doi: 10.1016/j.ijrmms.2007.02.002
    Cundall P A, Strack O D L. 1979. A discrete numerical model for granular assemblies[J]. Géotechnique, 29 (1):47-65. doi: 10.1680/geot.1979.29.1.47
    Deng H F, Zhu M, Li J L, et al. 2012. Study of mode-Ⅰ fracture toughness and its correlation with strength parameters of sandstone[J]. Rock and Soil Mechanics, 33 (12):3585-3591.
    Funatsu T, Shimizu N, Kuruppu M, et al. 2015. Evaluation of Mode Ⅰ fracture toughness assisted by the numerical determination of k-resistance[J]. Rock Mechanics and Rock Engineering, 48 (1):143-157. doi: 10.1007/s00603-014-0550-8
    Ghazvinian A, Sarfarazi V, Schubert W, et al. 2012. A study of the failure mechanism of planar non-persistent open joints using PFC2D[J]. Rock Mechanics and Rock Engineering, 45 (5):677-693. https://www.sciencedirect.com/science/article/pii/S0040195113002606
    Hofmann H, Babadagli T, Yoon J S, et al. 2015. A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites[J]. Engineering Fracture Mechanics, 147:261-275. doi: 10.1016/j.engfracmech.2015.09.008
    Huang D, Cen D F. 2013a. Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (9):1926-1936. https://www.researchgate.net/publication/286195466_Mechanical_responses_and_energy_dissipation_mechanism_of_rock_specimen_with_a_single_fissure_under_static_and_dynamic_uniaxial_compression_using_particle_flow_code_simulations
    Huang D, Cen D F, Huang R Q. 2013b. Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. Rock and Soil Mechanics, 34 (2):535-545. https://www.researchgate.net/publication/286195469_Influence_of_medium_strain_rate_on_sandstone_with_a_single_pre-crack_under_uniaxial_compression_using_PFC_simulation
    Huang D, Jin H H, Huang R Q. 2011. Mechanism of fracture mechanics and physical model test of rocks crack expanding under tension-shear stress[J]. Rock and Soil Mechanics, 32 (4):997-1002. https://www.researchgate.net/publication/286991194_Mechanism_of_fracture_mechanics_and_physical_model_test_of_rocks_crack_expanding_under_tension-shear_stress
    Huang Y H, Yang S Q. 2014. Particle flow simulation of macro-and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (8):1644-1653. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb201408015
    Itasca Consulting Group Inc. 2003. Users' manual for particle flow code in 2 dimensions(PFC2D), version 3. 0[R]. Minneapolis, Minnesota.
    Itasca Consulting Group Inc. 2008. Users' manual for particle flow code in 2 dimensions(PFC2D), version 4. 0[R]. Minneapolis, Minnesota.
    Itasca Consulting Group Inc. 2014. Users' manual for particle flow code(PFC), version 5. 0[R]. Minneapolis, Minnesota.
    Ivars D M, Pierce M E, Darcel D, et al. 2011. The synthetic rock mass approach for jointed rock mass modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 48 (2):219-244. doi: 10.1016/j.ijrmms.2010.11.014
    Jiang M J, Chen H, Zhang N, et al. 2014. Distinct element numerical analysis of crack evolution in rocks containing pre-existing double flaw[J]. Rock and Soil Mechanics, 35 (11):3259-3268, 3288. https://www.researchgate.net/publication/287291804_Distinct_element_numerical_analysis_of_crack_evolution_in_rocks_containing_pre-existing_double_flaw
    Jiang M J, Chen H. 2012. Numerical investigations on mechanisms of crack propagation and coalescence in rock by distinct element method[C]//National Conference on Computational Mechanics of Granular Materials(CMGM-2012). Zhangjiajie: [s. n. ]: 328-339.
    Jiang M J, Fang W, Si M J. 2015. Calibration of micro-parameters of parallel bonded model for rocks[J]. Journal of Shandong University(Engineering Science), 45 (4):50-56.
    Jiang M J, Yu H S, Harris D. 2006. Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 30 (8):723-761. doi: 10.1002/(ISSN)1096-9853
    Jiang M J, Yu H S, Leroueil S. 2007. A simple and efficient approach to capturing bonding effect in naturally micro-structured sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 69 (6):1158-1193. doi: 10.1002/(ISSN)1097-0207
    Lajtai E Z. 1974. Brittle fracture in compression[J]. International Journal of Fracture, 10 (4):525-536. doi: 10.1007/BF00155255
    Lee H, Jeon S. 2011. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 48 (6):979-999. doi: 10.1016/j.ijsolstr.2010.12.001
    Li F, Li X F. 2013. Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J]. Journal of Shenzhen University Science and Engineering, 30 (2):190-194. doi: 10.3724/SP.J.1249.2013.02190
    Li X B. 2016. Failure analysis of cracked rock specimen under direct tension based on PFC simulation[J]. Water Resources and Power, 34 (3):124-127.
    Liu H W, Yang C. 2016. Micro-analysis of uniaxial compression of cracked rock containing open or closing fissure based on PFC[J]. Water Resources and Power, 34 (1):131-135. doi: 10.1007/s10409-015-0444-3.pdf
    Ming H J, Xu X F, Liang B. 2013. Simulation of rock failure mechanism of different fracture apertures using particle flow code[J]. Journal of China Three Gorges University(Natural Sciences), 35 (6):63-66. http://d.wanfangdata.com.cn/Periodical_whsldldxxb-yc201306014.aspx
    Ni H M, Huang Y H, Liu X R. 2014. Particle flow simulation on loading rate effects of red sandstone containing two pre-existing fissures[J]. Chinese Journal of Underground Space and Engineering, 10 (5):1010-1016.
    Niu L X, Xin Y Y. 2015. Analysis on relationship between macro-parameters and micro-parameters in PFC2D model based on orthogonal design:case of rock uniaxial compression numerical test[J]. Yangtze River, 46 (16):53-57, 71. https://www.researchgate.net/publication/254542070_Simulation_of_the_Mechanical_Behavior_of_Discontinuous_Rock_Masses_Using_a_Bonded-particle_Model
    Park C H, Bobet A. 2009. Crack coalescence in specimens with open and closed flaws:A comparison[J]. International Journal of Rock Mechanics & Mining Sciences, 46 (5):819-829. https://www.sciencedirect.com/science/article/pii/S1365160909000410
    Potyondy D O, Cundall P A. 2004. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 41 (8):1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    Potyondy D O. 2012. A flat-jointed bonded-particle material for hard rock[C]//Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago: [s. n. ]: 24-27.
    Shu Y, Wu J M, Yue L, et al. 2016. Numerical simulation of mechanical behavior of single fractured rock mass under direct shear[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 17 (5):424-432.
    Su H J, Jing H W, Zhao H H, et al. 2014. Experimental study on the influence of longitudinal fissure on mechanics characteristic of sandstone[J]. Journal of Mining & Safety Engineering, 31 (4):644-649.
    Tang H M, Zhang J H, Chen H K. 2016. Laboratory tests on failure mechanism of fractured rock under compression[J]. Journal of Engineering Geology, 24 (3):363-368.
    Tang Q, Li Y A. 2015. Particle flow simulation on the influence of confinement on crack propagation in pre-cracked rock[J]. Journal of Yangtze River Scientific Research Institute, 32 (4):81-85.
    Wang W H, Wang X J, Jiang H T, et al. 2014. Experimental research on mechanical properties of rocklike specimens containing single cracks of different inclination angles under uniaxial compression[J]. Science & Technology Review, 32(28/29):48-53.
    Wang Y F, Zheng X J, Zhao H B, et al. 2015. Characteristics of coal's strength deformation and acoustic emission under biaxial loading with particle flow code[J]. Journal of Engineering Geology, 23 (6):1059-1065.
    Whittaker B N, Singh R N, Sun G. 1992. Rock fracture mechanics:Principles, design and applications[M]. Amsterdam:Elsevier.
    Wong L N Y, Einstein H H. 2009. Crack coalescence in molded gypsum and Carrara marble:part 1. macroscopic observations and interpretation[J]. Rock Mechanics and Rock Engineering, 42 (3):513-545. doi: 10.1007/s00603-008-0003-3
    Wong R H C, Tang C A, Chau K T, et al. 2002. Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression[J]. Engineering Fracture Mechanics, 69 (17):1853-1871. doi: 10.1016/S0013-7944(02)00065-6
    Xia M, Zhao C B. 2014. Dimensional analysis of effects of microscopic parameters on macroscopic parameters for clump parallel-bond model[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (2):327-338. https://www.researchgate.net/publication/285932504_Dimensional_analysis_of_effects_of_microscopic_parameters_on_macroscopic_parameters_for_clump_parallel-bond_model
    Xu J M, Xie Z L, Jia H T. 2010. Simulation of mesomechanical properties of limestone using particle flow code[J]. Rock and Soil Mechanics, 31(S2):390-395. https://www.researchgate.net/publication/289350783_Simulation_of_mesomechanical_properties_of_limestone_using_particle_flow_code
    Yang S Q, Huang Y H, Liu X R. 2014. Particle flow analysis on tensile strength and crack coalescence behavior of brittle rock containing two pre-existing fissures[J]. Journal of China University of Mining & Technology, 43 (2):220-226.
    Yang S Q, Huang Y H. 2014. Experiment and particle flow simulation on crack coalescence behavior of sandstone specimens containing double holes and a single fissure[J]. Journal of Basic Science and Engineering, 22 (3):584-597. https://www.researchgate.net/publication/287575523_Experiment_and_particle_flow_simulation_on_crack_coalescence_behavior_of_sandstone_specimens_containing_double_holes_and_a_single_fissure
    Yoon J S, Zang A, Stephansson O. 2012. Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model[J]. International Journal of Rock Mechanics & Mining Sciences, 49 (1):68-83. https://www.sciencedirect.com/science/article/pii/S1365160911001894
    Yoon J S. 2007. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock Mechanics & Mining Sciences, 44 (6):871-889. https://www.sciencedirect.com/science/article/pii/S1365160907000135
    Zeng Q D, Yao J, Huo J D. 2015. Inversion of rock meso-mechanical parameters based on parallel particle swarm optimization(PSO)algorithm[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 30 (4):27-32. https://www.researchgate.net/publication/282926231_Inversion_of_rock_meso-mechanical_parameters_based_on_parallel_particle_swarm_optimization_PSO_algorithm
    Zhang X P, Wong L N Y. 2013. Crack initiation, propagation and coalescence in rock-like material containing two flaws:a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 46 (5):1001-1021. doi: 10.1007/s00603-012-0323-1
    Zhang Z X, Kou S Q, Lindqvist P A, et al. 1998. The relationship between the fracture toughness and tensile strength of rock[M]. Strength theories: applications, development & prospects for 21st century. Beijing/NewYork: Science Press: 215-223.
    Zhao C B, Hobbs B E, Ord A, et al. 2007. Particle simulation of spontaneous crack generation problems in large-scale quasi-static systems[J]. International Journal for Numerical Methods in Engineering, 69 (11):2302-2329. doi: 10.1002/(ISSN)1097-0207
    Zhong B B, Zhang Y B, Li H. 2014. Study of mechanisms of crack propagation of rock based on RFPA2D[J]. Journal of Wuhan University of Technology, 36 (2):82-88.
    Zhou J, Wang J Q, Zeng Y, et al. 2009. Slope safety factor by methods of particle flow code strength reduction and gravity increase[J]. Rock and Soil Mechanics, 30 (6):1549-1554. https://www.researchgate.net/publication/289736639_Slope_safety_factor_by_methods_of_particle_flow_code_strength_reduction_and_gravity_increase
    Zhou Y, Gao Y T, Wu S C, et al. 2015. An equivalent crystal model for mesoscopic behaviour of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (3):511-519. https://www.researchgate.net/publication/281999448_An_equivalent_crystal_model_for_mesoscopic_behaviour_of_rock
    Zhou Y, Wu S C, Jiao J J, et al. 2011. Research on mesomechanical parameters of rock and soil mass based on BP neural network[J]. Rock and Soil Mechanics, 32 (12):3821-3826. https://www.researchgate.net/publication/287529732_Research_on_mesomechanical_parameters_of_rock_and_soil_mass_based_on_BP_neural_network
    岑夺丰, 黄达. 2014a.高应变率单轴压缩下岩体裂隙扩展的细观位移模式[J].煤炭学报, 39 (3):436-444. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403008.htm
    岑夺丰, 黄达, 黄润秋. 2014b.岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J].岩土工程学报, 36 (4):695-706. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15696.shtml
    岑夺丰. 2013. 岩质边坡阶梯状滑移机制颗粒流模拟及稳定性研究[D]. 重庆: 重庆大学.
    陈枫. 2002. 岩石压剪断裂的理论与实验研究[D]. 长沙: 中南大学.
    陈鹏宇, 余宏明. 2016.平直节理黏结颗粒材料宏细观参数关系及细观参数的标定[J].土木建筑与环境工程, 38 (5):74-83. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1011.htm
    陈鹏宇. 2015. 岩质高边坡坡体结构特征分析与稳定性研究——以焦作市龙寺矿山岩质高边坡为例[D]. 武汉: 中国地质大学(武汉).
    陈秀云. 2015.单一闭合中心裂隙对岩石单轴压缩破坏特征的影响[J].长江科学院院报, 32 (9):104-110.
    邓华锋, 朱敏, 李建林, 等. 2012.砂岩Ⅰ型断裂韧度及其与强度参数的相关性研究[J].岩土力学, 33 (12):3585-3591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201212009
    黄达, 岑夺丰. 2013a.单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J].岩石力学与工程学报, 32 (9):1926-1936. doi: 10.3969/j.issn.1000-6915.2013.09.026
    黄达, 岑夺丰, 黄润秋. 2013b.单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J].岩土力学, 34 (2):535-545. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201302035.htm
    黄达, 金华辉, 黄润秋. 2011.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J].岩土力学, 32 (4):997-1002. http://www.cqvip.com/QK/94551X/201104/37228120.html
    黄彦华, 杨圣奇. 2014.非共面双裂隙红砂岩宏细观力学行为颗粒流模拟[J].岩石力学与工程学报, 33 (8):1644-1653. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408017.htm
    蒋明镜, 陈贺, 张宁, 等. 2014.含双裂隙岩石裂纹演化机理的离散元数值分析[J].岩土力学, 35 (11):3259-3268, 3288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201411030
    蒋明镜, 陈贺. 2012. 岩石裂纹扩展与贯通机制的离散元数值分析[C]//2012颗粒材料计算力学会议. 张家界: [出版者不详]: 328-339.
    蒋明镜, 方威, 司马军. 2015.模拟岩石的平行黏结模型微观参数标定[J].山东大学学报(工学版), 45 (4):50-56. doi: 10.6040/j.issn.1672-3961.0.2014.183
    李凡, 李雪峰. 2013.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报(理工版), 30 (2):190-194. http://d.wanfangdata.com.cn/Periodical_szdxxb201302014.aspx
    李现宾. 2016.裂隙岩石直接拉伸断裂破坏的颗粒流模拟分析[J].水电能源科学, 34 (3):124-127.
    刘华伟, 杨晨. 2016.闭合与非闭合裂隙岩石单轴压缩的颗粒流细观分析[J].水电能源科学, 34 (1):131-135. http://www.cqvip.com/QK/95255X/201601/667698179.html
    明华军, 徐小峰, 梁波. 2013.不同裂隙张开度下岩石材料破坏的颗粒离散元模拟[J].三峡大学学报(自然科学版), 35 (6):63-66. http://d.wanfangdata.com.cn/Periodical_whsldldxxb-yc201306014.aspx
    倪红梅, 黄彦华, 刘相如. 2014.断续双裂隙红砂岩加载速率效应颗粒流分析[J].地下空间与工程学报, 10 (5):1010-1016.
    牛林新, 辛酉阳. 2015.基于正交设计的颗粒流模型宏细观参数相关分析——以岩石单轴压缩数值试验为例[J].人民长江, 46 (16):53-57, 71. http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201516013.htm
    舒杨, 吴继敏, 岳翎, 等. 2016.直剪条件下单裂隙岩体力学行为数值模拟试验[J].解放军理工大学学报(自然科学版), 17 (5):424-432.
    苏海健, 靖洪文, 赵洪辉, 等. 2014.纵向裂隙对砂岩力学特性影响试验研究[J].采矿与安全工程学报, 31 (4):644-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ksylydbgl201404025
    唐红梅, 张金浩, 陈洪凯. 2016.含裂隙岩石的受压破坏机理研究[J].工程地质学报, 24 (3):363-368. http://www.gcdz.org/CN/abstract/abstract11981.shtml
    唐谦, 李云安. 2015.围压对岩石裂纹扩展影响的颗粒流模拟研究[J].长江科学院院报, 32 (4):81-85. http://d.wanfangdata.com.cn/Periodical_cjkxyyb201504016.aspx
    王卫华, 王小金, 姜海涛, 等. 2014.单轴压缩作用下含不同倾角裂隙的类岩石试样力学特性[J].科技导报, 32(28/29):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB2014Z2020.htm
    王云飞, 郑晓娟, 赵洪波, 等. 2015.双向加载煤岩变形与声发射特性颗粒流研究[J].工程地质学报, 23 (6):1059-1065. http://www.gcdz.org/CN/abstract/abstract11910.shtml
    夏明, 赵崇斌. 2014.簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J].岩石力学与工程学报, 33 (2):327-338. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb201402014
    徐金明, 谢芝蕾, 贾海涛. 2010.石灰岩细观力学特性的颗粒流模拟[J].岩土力学, 31 (增2):390-395. https://www.wenkuxiazai.com/doc/3f04297b27284b73f2425036-3.html
    杨圣奇, 黄彦华, 刘相如. 2014a.断续双裂隙岩石抗拉强度与裂纹扩展颗粒流分析[J].中国矿业大学学报, 43 (2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201402007.htm
    杨圣奇, 黄彦华. 2014b.双孔洞裂隙砂岩裂纹扩展特征试验与颗粒流模拟[J].应用基础与工程科学学报, 22 (3):584-597.
    曾青冬, 姚军, 霍吉东. 2015.基于并行PSO算法的岩石细观力学参数反演研究[J].西安石油大学学报(自然科学版), 30 (4):27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb201504006
    钟波波, 张永彬, 李宏. 2014.基于RFPA2D的岩石裂纹扩展模式的研究[J].武汉理工大学学报, 36 (2):82-88. http://www.docin.com/p-526796309.html
    周健, 王家全, 曾远, 等. 2009.颗粒流强度折减法和重力增加法的边坡安全系数研究[J].岩土力学, 30 (6):1549-1554. http://www.cqvip.com/QK/94551X/200906/30528366.html
    周喻, 高永涛, 吴顺川, 等. 2015.等效晶质模型及岩石力学特征细观研究[J].岩石力学与工程学报, 34 (3):511-519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201503008
    周喻, 吴顺川, 焦建津, 等. 2011.基于BP神经网络的岩土体细观力学参数研究[J].岩土力学, 32 (12):3821-3826. doi: 10.3969/j.issn.1000-7598.2011.12.045
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3949
  • HTML全文浏览量:  787
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-07
  • 录用日期:  2017-04-04
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回