QUANTITATIVE ANALYSIS FOR NANOPORE STRUCTURE CHARACTERISTICS OF SHALES USING NMR AND NMR CRYOPOROMETRY
-
摘要: 选取威远海相页岩(1#)、焦石坝海相页岩(2#)、瑶曲凝灰岩(4#)及瑶曲陆相页岩(5#和6#),采用场发射扫描电镜(FE-SEM)与低场核磁共振(NMR),研究中国海相页岩和陆相页岩之间的孔隙结构特征的差异化特征。核磁共振冻融法(NMRC)可以精细探测页岩的纳米范围的孔隙结构。该方法可以拓展到结合核磁共振弛豫分析进行微观测量,详细探测不同孔径尺度下页岩的孔隙结构。测试温度梯度变化越小,孔隙分布测量的结果越精细。测试结果表明,从样品5#,2#,6#,1#至样品4#的孔隙率逐个减小。NMRC,LFNMR,压汞法(MIP),气体吸附法(GA)在它们各自的有效测量范围内,孔径分布表现出良好的一致性。因此,将NMRC,LFNMR与GA和MIP等方法组合,可以更准确地评估储层页岩的孔隙结构。研究结果表明,陆相页岩(5#瑶曲页岩)的纳米孔隙更发育,与海相页岩相比也许具有更高的商业开发价值。Abstract: Based on the differences in pore structure characteristics between marine and continental shale in China, Weiyuan marine shale(1#), Jiao Shiba marine shale(2#), Yaoqu tuff(4#) and Yaoqu continental shale(5# and 6#)were selected to study the pore structure characteristics using cold field emission scanning microscopy(FE-SEM) and nuclear magnetic resonance(NMR). Nuclear magnetic resonance cryoporometry(NMRC)was employed to represent nano-scale pore structure. This method can be extended to microns measurement combining nuclear magnetic resonance relaxation analysis to detect in detail the pore structure of shales under the different aperture scales. The smaller the test temperature gradient is, the finer the result of pore distribution is. Test results show decreasing porosity from sample 5#, 2#, 6#, and 1# to sample 4#. NMRC, low field nuclear magnetic resonance(LFNMR), mercury intrusion porosimetry(MIP) and gas adsorption(GA)methods show good agreement of pore size distribution in their respective scope of application. Hence, the pore structure of the reservoir shale can be evaluated more accurately by combining NMRC, LFNMR with GA and MIP. Thus the nano-pores of continental shale(5# Yaoqu shale) are clearly better developed and will more likely have a higher commercial exploitation value than those of marine shale.
-
表 1 页岩矿物成分分析结果(%)
Table 1. Analysis results of shale mineral content(%)
编号 取样地点 岩性 石英含量 钾长石含量 钠长石含量 方解石含量 白云石含量 黄铁矿含量 菱铁矿含量 BI脆性系数 1# 威远 页岩 38.5 3.1 19.7 6.8 13.8 3.6 / 52.3 2# 焦石坝 页岩 36.3 0.9 8.6 6.4 5.5 5.5 / 42.7 4# 瑶曲 凝灰岩 31.5 5.0 22.3 1.3 10.2 / 6.2 39.3 5# 瑶曲 页岩 28.6 0.8 15.4 / / / / 34.1 6# 瑶曲 页岩 21.4 0.5 5.5 / / 20.8 / 29.2 BI=石英含量/(石英含量+碳酸盐岩含量+黏土含量) 表 2 页岩孔隙测试方法比较
Table 2. Pore test methods comparison
方法 样品质量 样品尺寸 测试范围 孔隙有效测试范围 测试时间 MIP 1~2g 小于$φ$10.0mm×H15mm 3nm~400μm 100nm~100μm 1 h GA 3~8g 小于$φ$6mm×H6mm 0.5~400nm 2~50nm 11 h LFNMR 1~2g 小于$φ$25mm×H30mm 2nm~100μm 2nm~10μm 10min NMRC 1~2g 小于$φ$10mm×H25mm 2nm~1μm 2~100nm 3 h -
Coates G R, Xiao L Z, Pramm E M. 2007. NMR logging principles and application[M]. Meng F Y translation. Beijing: Petroleum Industry Press: 36-39. Dore J C, Webber J B W, Strange J H. 2004. Characterisation of porous solids using small-angle scattering and NMR cryoporometry[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 241:191-200. http://cn.bing.com/academic/profile?id=3661a0cb11cd373446ab9b862994ce24&encoded=0&v=paper_preview&mkt=zh-cn Fantazzini P, Viola R, Alnaimi S M, et al. 2001. Combined MR-Relaxation and MR-Cryoporometry in the study of bone microstructure[J]. Magnetic Resonance Imaging, 19:481-484. doi: 10.1016/S0730-725X(01)00272-7 Fleury M, Fabre R, Webber J B W. 2015. Comparison of pore size distribution by NMR relaxation and NMR cryoporometry in shales[J]. SCA, 25-36. http://cn.bing.com/academic/profile?id=0fe333d9ea00591fe6a302f45858ea13&encoded=0&v=paper_preview&mkt=zh-cn Gopinathan N, Yang B, Lowe J P, et al. 2014. NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles[J]. International Journal of Pharmaceutics, 469(1):146-158. doi: 10.1016/j.ijpharm.2014.04.018 He Y D, Mao Z Q, Xiao L Z, et al. 2005. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics, 48 (2):373-378. doi: 10.1002/cjg2.668 Jackson C L, McKenna G B. 1990. The melting behavior of organic materials confined in porous solids[J]. The Journal of Chemical Physics, 93, 9002-9011. doi: 10.1063/1.459240 Jeon J D, Kim S J, Kwak S Y.2008.1H nuclear magnetic resonance(NMR)cryoporometry as a tool to determine the pore size distribution of ultrafiltration membranes[J]. Journal of Membrane Science, 309:233-238. doi: 10.1016/j.memsci.2007.10.034 Li T J, Li Z F, Zhao Y C, et al. 2006. Consistency of pore structures between NMR and mercury intrusion method[J]. Natural Gas Industry, 26(10); 57-59. https://www.researchgate.net/publication/288016173_Consistency_of_pore_structures_between_NMR_and_mercury_intrusion_method Li Z Q, Oyediran I A, Huang R Q, et al. 2016. Study on pore structure characteristics of marine and continental shale in China[J]. Journal of Natural Gas Science and Engineering, 33:143-152. doi: 10.1016/j.jngse.2016.05.011 Mitchell J, Webber J B W, Strange J H. 2008. Nuclear magnetic resonance cryoporometry[J]. Physics Reports, 461(1):1-36. doi: 10.1016/j.physrep.2008.02.001 Overloop K, Vangerven L. 1993. Freezing phenomena in adsorbed water as studied by NMR[J]. Journal of Magnetic Resonance, Series A, 101(2):179-187. doi: 10.1006/jmra.1993.1028 Pan Z J, Connell L D. 2015. Reservoir simulation of free and adsorbed gas production from shale[J]. Journal of Natural Gas Science and Engineering, 22:359-370. doi: 10.1016/j.jngse.2014.12.013 Petrov O, Furó I, Schuleit M, et al. 2006. Pore size distributions of biodegradable polymer microparticles in aqueous environments measured by NMR cryoporometry[J]. International Journal of Pharmaceutics, 309(1-2):157-162. doi: 10.1016/j.ijpharm.2005.11.027 Petrov O, Furó I. 2009. NMR cryoporometry:Principles, applications and potential[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 54(2):97-122. doi: 10.1016/j.pnmrs.2008.06.001 Petrov O, Furó I. 2010. A joint use of melting and freezing data in NMR cryoporometry[J]. Microporous and Mesoporous Materials, 136(1-3):83-91. doi: 10.1016/j.micromeso.2010.08.001 Rezaee R, Saeedi A, Clennell B. 2012. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data[J]. Journal of Petroleum Science and Engineering, 88:92-99. http://cn.bing.com/academic/profile?id=eca3e66eb0351236340aa5eb9476e43b&encoded=0&v=paper_preview&mkt=zh-cn Strange J H, Rahman M, Smith E G. 1993. Characterization of porous solids by NMR[J]. Physical Review Letters, 71:3589-3591. doi: 10.1103/PhysRevLett.71.3589 Tan L, Wei C F, Tian H H, et al. 2015. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 36 (6):1566-1572. http://cn.bing.com/academic/profile?id=4d331a2f2f66761ff4b73b7ea8152b4c&encoded=0&v=paper_preview&mkt=zh-cn Webber J B W, Anderson R, Strange J H, et al. 2007. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation[J]. Magnetic Resonance Imaging, 25(4):533-536. doi: 10.1016/j.mri.2006.11.022 Webber J B W, Corbett P, Semple K T, et al. 2013. An NMR study of porous rock and biochar containing organic material[J]. Microporous and Mesoporous Materials, 178:94-98. doi: 10.1016/j.micromeso.2013.04.004 Yun H Y, Zhao W J, Liu B K, et al. 2002. Researching rock pore structure with T2 distribution[J]. Well Logging Technology, 26 (1):18-21. http://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1992/2460 Zhang C M, Chen Z B, Zhang Z S, et al. 2007. Fractal characteristics of reservoir rock pore structure based on NMR T2 distribution[J]. Journal of Oil and Gas Technology, 29 (4):80-86. http://cn.bing.com/academic/profile?id=25509db8e3029e92760c5aca8af5b8c5&encoded=0&v=paper_preview&mkt=zh-cn Zhang L H, Guo J, Tang H M, et al. 2015. Pore structure characteristics of Longmaxi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 35 (3):22-29. 何雨丹, 毛志强, 肖立志, 等. 2005.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报, 48 (2):373-378. https://es.scribd.com/document/265808204/I 李天降, 李子丰, 赵彦超, 等. 2006.核磁共振与压汞法的孔隙结构一致性研究[J].天然气工业, 26 (10):57-59. doi: 10.3321/j.issn:1000-0976.2006.10.017 谭龙, 韦昌富, 田慧会, 等. 2015.冻土未冻水含量的低场核磁共振试验研究[J].岩土力学, 36 (6):1566-1572. http://www.cqvip.com/QK/94551X/201506/664979647.html 运华云, 赵文杰, 刘兵开, 等. 2002.利用T2分布进行岩石孔隙结构研究[J].测井技术, 26 (1):18-21. doi: 10.1007/s11430-015-5170-y-44?slug=full%20text 张超谟, 陈振标, 张占松, 等. 2007.基于核磁共振T2谱分布的储层岩石孔隙分形结构研究[J].石油天然气学报(江汉石油学院学报), 29 (4):80-86. http://xueshu.baidu.com/s?wd=paperuri%3A%286fc95bc873f63cccead704cb9984648a%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Djhsx200704015%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=10205092237201958513 张烈辉, 郭晶晶, 唐洪明, 等. 2015.四川盆地南部下志留统龙马溪组页岩孔隙结构特征[J].天然气工业, 35 (3):22~29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201503003 -