基于核磁共振法的页岩纳米孔隙结构特征研究

李志清 孙洋 胡瑞林 赵颖 彭宇

李志清, 孙洋, 胡瑞林, 赵颖, 彭宇. 2018: 基于核磁共振法的页岩纳米孔隙结构特征研究. 工程地质学报, 26(3): 758-766. doi: 10.13544/j.cnki.jeg.2017-126
引用本文: 李志清, 孙洋, 胡瑞林, 赵颖, 彭宇. 2018: 基于核磁共振法的页岩纳米孔隙结构特征研究. 工程地质学报, 26(3): 758-766. doi: 10.13544/j.cnki.jeg.2017-126
LI Zhiqing, SUN Yang, HU Ruilin, ZHAO Ying, PENG Yu. 2018: QUANTITATIVE ANALYSIS FOR NANOPORE STRUCTURE CHARACTERISTICS OF SHALES USING NMR AND NMR CRYOPOROMETRY. JOURNAL OF ENGINEERING GEOLOGY, 26(3): 758-766. doi: 10.13544/j.cnki.jeg.2017-126
Citation: LI Zhiqing, SUN Yang, HU Ruilin, ZHAO Ying, PENG Yu. 2018: QUANTITATIVE ANALYSIS FOR NANOPORE STRUCTURE CHARACTERISTICS OF SHALES USING NMR AND NMR CRYOPOROMETRY. JOURNAL OF ENGINEERING GEOLOGY, 26(3): 758-766. doi: 10.13544/j.cnki.jeg.2017-126

基于核磁共振法的页岩纳米孔隙结构特征研究

doi: 10.13544/j.cnki.jeg.2017-126
基金项目: 

中国科学院战略性先导科技专项(B类) XDB10030100

中国科学院战略性先导科技专项(B类) XDB10030102

国家自然科学基金 41672316

中国科学院青年创新促进会 2017092

中国科学院关键技术人才项目

详细信息
    作者简介:

    李志清(1981-), 男, 博士, 高级工程师, 硕士生导师, 主要从事页岩储层特性、非饱和土力学、公路工程等方面的科研与教学工作.Email:lizhiq-2002@163.com

  • 中图分类号: P584

QUANTITATIVE ANALYSIS FOR NANOPORE STRUCTURE CHARACTERISTICS OF SHALES USING NMR AND NMR CRYOPOROMETRY

  • 摘要: 选取威远海相页岩(1#)、焦石坝海相页岩(2#)、瑶曲凝灰岩(4#)及瑶曲陆相页岩(5#和6#),采用场发射扫描电镜(FE-SEM)与低场核磁共振(NMR),研究中国海相页岩和陆相页岩之间的孔隙结构特征的差异化特征。核磁共振冻融法(NMRC)可以精细探测页岩的纳米范围的孔隙结构。该方法可以拓展到结合核磁共振弛豫分析进行微观测量,详细探测不同孔径尺度下页岩的孔隙结构。测试温度梯度变化越小,孔隙分布测量的结果越精细。测试结果表明,从样品5#,2#,6#,1#至样品4#的孔隙率逐个减小。NMRC,LFNMR,压汞法(MIP),气体吸附法(GA)在它们各自的有效测量范围内,孔径分布表现出良好的一致性。因此,将NMRC,LFNMR与GA和MIP等方法组合,可以更准确地评估储层页岩的孔隙结构。研究结果表明,陆相页岩(5#瑶曲页岩)的纳米孔隙更发育,与海相页岩相比也许具有更高的商业开发价值。
  • 图  1  NMR冻融法原理

    Figure  1.  Principles of NMR cryoporometry

    图  2  样品T2谱分布

    a. 1#样品;b. 2#样品;c. 4#样品;d. 5#样品;e. 6#样品

    Figure  2.  T2 spectral distribution of samples

    图  3  1#样品的电子显微照片

    Figure  3.  Electron micrograph of sample 1#

    图  4  2#样品的电子显微照片

    a.微裂隙的放大照片; b.有机孔的区域A的放大照片

    Figure  4.  Electron micrograph of sample 2#

    图  5  4#样品的电子显微照片

    Figure  5.  Electron micrograph of sample 4#

    图  6  5#样品的电子显微照片

    Figure  6.  Electron micrograph of sample 5#

    图  7  6#样品的电子显微照片

    a.晶间孔的放大照片; b.晶间缝的区域A的放大照片

    Figure  7.  Electron micrograph of sample 6#

    图  8  样品的孔径分布

    Figure  8.  The pore size distribution of samples

    图  9  不同温度下2#样品的T2光谱分布

    Figure  9.  T2 spectrum distribution

    图  10  含水量和信号强度的校准曲线

    Figure  10.  The calibration curve between water content and signal intensity of sample 2#

    图  11  不同样品孔径分布的比较

    Figure  11.  Comparison of the pore volume distributions among different samples with pore diameter increasing

    表  1  页岩矿物成分分析结果(%)

    Table  1.   Analysis results of shale mineral content(%)

    编号 取样地点 岩性 石英含量 钾长石含量 钠长石含量 方解石含量 白云石含量 黄铁矿含量 菱铁矿含量 BI脆性系数
    1# 威远 页岩 38.5 3.1 19.7 6.8 13.8 3.6 / 52.3
    2# 焦石坝 页岩 36.3 0.9 8.6 6.4 5.5 5.5 / 42.7
    4# 瑶曲 凝灰岩 31.5 5.0 22.3 1.3 10.2 / 6.2 39.3
    5# 瑶曲 页岩 28.6 0.8 15.4 / / / / 34.1
    6# 瑶曲 页岩 21.4 0.5 5.5 / / 20.8 / 29.2
    BI=石英含量/(石英含量+碳酸盐岩含量+黏土含量)
    下载: 导出CSV

    表  2  页岩孔隙测试方法比较

    Table  2.   Pore test methods comparison

    方法 样品质量 样品尺寸 测试范围 孔隙有效测试范围 测试时间
    MIP 1~2g 小于$φ$10.0mm×H15mm 3nm~400μm 100nm~100μm 1 h
    GA 3~8g 小于$φ$6mm×H6mm 0.5~400nm 2~50nm 11 h
    LFNMR 1~2g 小于$φ$25mm×H30mm 2nm~100μm 2nm~10μm 10min
    NMRC 1~2g 小于$φ$10mm×H25mm 2nm~1μm 2~100nm 3 h
    下载: 导出CSV
  • Coates G R, Xiao L Z, Pramm E M. 2007. NMR logging principles and application[M]. Meng F Y translation. Beijing: Petroleum Industry Press: 36-39.
    Dore J C, Webber J B W, Strange J H. 2004. Characterisation of porous solids using small-angle scattering and NMR cryoporometry[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 241:191-200. http://cn.bing.com/academic/profile?id=3661a0cb11cd373446ab9b862994ce24&encoded=0&v=paper_preview&mkt=zh-cn
    Fantazzini P, Viola R, Alnaimi S M, et al. 2001. Combined MR-Relaxation and MR-Cryoporometry in the study of bone microstructure[J]. Magnetic Resonance Imaging, 19:481-484. doi: 10.1016/S0730-725X(01)00272-7
    Fleury M, Fabre R, Webber J B W. 2015. Comparison of pore size distribution by NMR relaxation and NMR cryoporometry in shales[J]. SCA, 25-36. http://cn.bing.com/academic/profile?id=0fe333d9ea00591fe6a302f45858ea13&encoded=0&v=paper_preview&mkt=zh-cn
    Gopinathan N, Yang B, Lowe J P, et al. 2014. NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles[J]. International Journal of Pharmaceutics, 469(1):146-158. doi: 10.1016/j.ijpharm.2014.04.018
    He Y D, Mao Z Q, Xiao L Z, et al. 2005. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics, 48 (2):373-378. doi: 10.1002/cjg2.668
    Jackson C L, McKenna G B. 1990. The melting behavior of organic materials confined in porous solids[J]. The Journal of Chemical Physics, 93, 9002-9011. doi: 10.1063/1.459240
    Jeon J D, Kim S J, Kwak S Y.2008.1H nuclear magnetic resonance(NMR)cryoporometry as a tool to determine the pore size distribution of ultrafiltration membranes[J]. Journal of Membrane Science, 309:233-238. doi: 10.1016/j.memsci.2007.10.034
    Li T J, Li Z F, Zhao Y C, et al. 2006. Consistency of pore structures between NMR and mercury intrusion method[J]. Natural Gas Industry, 26(10); 57-59. https://www.researchgate.net/publication/288016173_Consistency_of_pore_structures_between_NMR_and_mercury_intrusion_method
    Li Z Q, Oyediran I A, Huang R Q, et al. 2016. Study on pore structure characteristics of marine and continental shale in China[J]. Journal of Natural Gas Science and Engineering, 33:143-152. doi: 10.1016/j.jngse.2016.05.011
    Mitchell J, Webber J B W, Strange J H. 2008. Nuclear magnetic resonance cryoporometry[J]. Physics Reports, 461(1):1-36. doi: 10.1016/j.physrep.2008.02.001
    Overloop K, Vangerven L. 1993. Freezing phenomena in adsorbed water as studied by NMR[J]. Journal of Magnetic Resonance, Series A, 101(2):179-187. doi: 10.1006/jmra.1993.1028
    Pan Z J, Connell L D. 2015. Reservoir simulation of free and adsorbed gas production from shale[J]. Journal of Natural Gas Science and Engineering, 22:359-370. doi: 10.1016/j.jngse.2014.12.013
    Petrov O, Furó I, Schuleit M, et al. 2006. Pore size distributions of biodegradable polymer microparticles in aqueous environments measured by NMR cryoporometry[J]. International Journal of Pharmaceutics, 309(1-2):157-162. doi: 10.1016/j.ijpharm.2005.11.027
    Petrov O, Furó I. 2009. NMR cryoporometry:Principles, applications and potential[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 54(2):97-122. doi: 10.1016/j.pnmrs.2008.06.001
    Petrov O, Furó I. 2010. A joint use of melting and freezing data in NMR cryoporometry[J]. Microporous and Mesoporous Materials, 136(1-3):83-91. doi: 10.1016/j.micromeso.2010.08.001
    Rezaee R, Saeedi A, Clennell B. 2012. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data[J]. Journal of Petroleum Science and Engineering, 88:92-99. http://cn.bing.com/academic/profile?id=eca3e66eb0351236340aa5eb9476e43b&encoded=0&v=paper_preview&mkt=zh-cn
    Strange J H, Rahman M, Smith E G. 1993. Characterization of porous solids by NMR[J]. Physical Review Letters, 71:3589-3591. doi: 10.1103/PhysRevLett.71.3589
    Tan L, Wei C F, Tian H H, et al. 2015. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 36 (6):1566-1572. http://cn.bing.com/academic/profile?id=4d331a2f2f66761ff4b73b7ea8152b4c&encoded=0&v=paper_preview&mkt=zh-cn
    Webber J B W, Anderson R, Strange J H, et al. 2007. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation[J]. Magnetic Resonance Imaging, 25(4):533-536. doi: 10.1016/j.mri.2006.11.022
    Webber J B W, Corbett P, Semple K T, et al. 2013. An NMR study of porous rock and biochar containing organic material[J]. Microporous and Mesoporous Materials, 178:94-98. doi: 10.1016/j.micromeso.2013.04.004
    Yun H Y, Zhao W J, Liu B K, et al. 2002. Researching rock pore structure with T2 distribution[J]. Well Logging Technology, 26 (1):18-21. http://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1992/2460
    Zhang C M, Chen Z B, Zhang Z S, et al. 2007. Fractal characteristics of reservoir rock pore structure based on NMR T2 distribution[J]. Journal of Oil and Gas Technology, 29 (4):80-86. http://cn.bing.com/academic/profile?id=25509db8e3029e92760c5aca8af5b8c5&encoded=0&v=paper_preview&mkt=zh-cn
    Zhang L H, Guo J, Tang H M, et al. 2015. Pore structure characteristics of Longmaxi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 35 (3):22-29.
    何雨丹, 毛志强, 肖立志, 等. 2005.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报, 48 (2):373-378. https://es.scribd.com/document/265808204/I
    李天降, 李子丰, 赵彦超, 等. 2006.核磁共振与压汞法的孔隙结构一致性研究[J].天然气工业, 26 (10):57-59. doi: 10.3321/j.issn:1000-0976.2006.10.017
    谭龙, 韦昌富, 田慧会, 等. 2015.冻土未冻水含量的低场核磁共振试验研究[J].岩土力学, 36 (6):1566-1572. http://www.cqvip.com/QK/94551X/201506/664979647.html
    运华云, 赵文杰, 刘兵开, 等. 2002.利用T2分布进行岩石孔隙结构研究[J].测井技术, 26 (1):18-21. doi: 10.1007/s11430-015-5170-y-44?slug=full%20text
    张超谟, 陈振标, 张占松, 等. 2007.基于核磁共振T2谱分布的储层岩石孔隙分形结构研究[J].石油天然气学报(江汉石油学院学报), 29 (4):80-86. http://xueshu.baidu.com/s?wd=paperuri%3A%286fc95bc873f63cccead704cb9984648a%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Djhsx200704015%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=10205092237201958513
    张烈辉, 郭晶晶, 唐洪明, 等. 2015.四川盆地南部下志留统龙马溪组页岩孔隙结构特征[J].天然气工业, 35 (3):22~29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201503003
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  2535
  • HTML全文浏览量:  608
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-26
  • 录用日期:  2017-10-24
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回