工程场址区域地壳稳定性InSAR评价研究

姚鑫 张路青 李凌婧 曾庆利

姚鑫,张路青,李凌婧,等. 2021. 工程场址区域地壳稳定性InSAR评价研究[J]. 工程地质学报, 29(1): 104-115. doi: 10.13544/j.cnki.jeg.2017-153
引用本文: 姚鑫,张路青,李凌婧,等. 2021. 工程场址区域地壳稳定性InSAR评价研究[J]. 工程地质学报, 29(1): 104-115. doi: 10.13544/j.cnki.jeg.2017-153
Yao Xin, Zhang Luqing, Li Lingjing, et al. 2021. InSAR observing the regional crustal stability of engineering sites[J]. Journal of Engineering Geology, 29(1): 104-115. doi: 10.13544/j.cnki.jeg.2017-153
Citation: Yao Xin, Zhang Luqing, Li Lingjing, et al. 2021. InSAR observing the regional crustal stability of engineering sites[J]. Journal of Engineering Geology, 29(1): 104-115. doi: 10.13544/j.cnki.jeg.2017-153

工程场址区域地壳稳定性InSAR评价研究

doi: 10.13544/j.cnki.jeg.2017-153
基金项目: 

国家重点研发计划课题 2018YFC1505002

三峡集团公司项目 YMJ(XLD)(19)110

国家自然科学基金项目 41672359

国家自然科学基金项目 41807299

详细信息
    作者简介:

    姚鑫(1978-),男,博士,研究员,主要从事InSAR与地质灾害的研究工作. E-mail: yaoxinphd@163.com

  • 中图分类号: P642.27

INSAR OBSERVING THE REGIONAL CRUSTAL STABILITY OF ENG INEERING SITES

Funds: 

the National Key Research and Development Program 2018YFC1505002

Three Gorges Corporation Program YMJ(XLD)(19)110

National Natural Science Foundation of China 41672359

National Natural Science Foundation of China 41807299

  • 摘要: 针对区域地壳稳定性评价往往面对区域广阔、数据匮乏、时间紧迫等问题,本文提出基于InSAR技术的区域地壳稳定性要素提取及分析方法,其具有空间覆盖范围大、时间可回溯、观测效率高等优势。以阿拉善地区某重大工程选址为例,选用1996~2010年存档ASAR/ERS合成空间雷达数据,利用D-InSAR技术提取的厘米级非线性变形量识别了地质灾害、浅层地下水变动等信息,利用IPTA-InSAR提取的毫米级变形速率分析了构造活动性,结合地质背景评价了工程场址区域地壳稳定性。本研究为有限条件下快速开展区域地壳稳定性评价提供了一种新思路。
  • 图  1  工作区位置、SAR数据范围、地层岩性与活动断裂

    Figure  1.  Study location, SAR regions, strata & lithology and active fault

    图  2  InSAR监测地表变形示意图

    Figure  2.  Schematic map of InSAR princple

    图  3  IPT-InSAR A计算采用的时空基线

    a.场址一9景ERS数据时空基线;b.场址二16景有效ASAR数据时空基线

    Figure  3.  Temporal-spatial bases used to IPTA-InSAR calculation

    图  4  场址二SAR数据强度图像及主要地物特征

    Figure  4.  SAR intensity image and features of ground surface objects

    图  5  场址一1997年9月28日至12月7日间D-InSAR观测的局部干涸湖泊地下水引起的地表变形

    Figure  5.  D-InSAR surface deformation induced by ground water below the dried lake between 1997-9-28 and 1997-12-7 in site No.1

    图  6  场址二D-InSAR监测到的局部非线性变形

    a.露天矿边坡变形;b.受浅表层地下水影响形成的干涸湖盆变形;c.基础不稳定电力线塔变形;d.受浅表层地下水影响形成的干涸湖盆变形

    Figure  6.  Nonlinear local deformation surveyed by D-InSAR in site No.2

    图  7  IPTA-InSAR方法计算的大气误差(雷达坐标)

    a.场址一9幅SAR数据的大气误差;b.场址二16幅SAR数据的大气误差

    Figure  7.  Atmospheric delay error retrieved by IPTA-InSAR method(SAR Coordinate)

    图  8  场址一1996年6月30日至1999年12月12日间IPTA-InSAR线性变形速率及两个钻孔附近变形时程曲线

    a.北侧钻孔变形时程曲线;b.南侧钻孔变形时程曲线

    Figure  8.  IPTA-InSAR linear deformation velocity and Time-movement graph of 2 boreholes between 1996-6-30 and 1999-12-12 in site No.1

    图  9  场址二2007年1月11日至2010年9月2日间IPTA-InSAR线性变形速率及2个钻孔附近变形时程曲线

    a.北侧钻孔变形时程曲线;b.南侧钻孔变形时程曲线

    Figure  9.  IPTA-InSAR linear deformation velocity and Time-movement graph of 2 boreholes between 2007-1-11 and 2010-9-2 in site No.2

    图  10  工作区及邻区大地变形速率GPS观测值

    Figure  10.  GPS velocities of tectonic deformation in study area and adjacent area

  • Berardino P, Fornaro G, Lanar I R, et al. 2002. A new algorithm for surface de formation monitoring based on small base line differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2380. doi: 10.1109/TGRS.2002.803792
    Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan fault(Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 275(3): 246-257. doi: 10.1016/j.epsl.2008.07.057
    Chen Q X. 1992. An approach to assessment of regional crustal stability[J]. Quaternary Sciences,(4): 289-292. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199204000.htm
    Du D J. 1986. Regional stability two-level fuzzy comprehensive evaluation[J]. Journal of Chang'an University(Earth Science Edition),(3): 213-300.
    Fan J H, Guo H D, Guo X F, et al. 2008. Monitoring subsidence in Tianjin area using interferogram stacking based on coherent targets[J]. Journal of Remote Sensing, 12(1): 111-118. doi: 10.1016/S1001-0742(08)62079-3
    Ferretti A, Prati C, Rocca F, et al. 2000. Nonlinear subsidence rate estimation using permanent scatters in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212. doi: 10.1109/36.868878
    Ferretti A, Prati C, Rocca F. 2001. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20. doi: 10.1109/36.898661
    Ferretti A, Savio G, Barzaghi, et al. 2007. Submillimeter accuracy of InSAR time series: Experimental validation[J]. IEEE Transaction on Geoscience and Remote Sensing, 45(5): 1142-1153. doi: 10.1109/TGRS.2007.894440
    Fialko Y. 2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system[J]. Nature,(441): 968-971.
    Hooper A P, Segall P, Zebker H. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volca′n Alcedo, Gala′pagos[J]. Journal of Geophysical Research Solid Earth, 112, B07407, doi: 10.1029/2006JB004763.
    Hu H T, Liu C Z. 1993. Review and prospect on regional crustal stability of engineering sites[J]. Journal of Engineering Geology, 1(1): 7-13.
    Institute of geomechanics, Chinese Academy of Geological Sciences. 2015. Specification of active fault investigation and regional crustal stability assessment(1 ︰ 50000、1 ︰ 250000)(DD2015-02)[S]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences.
    Institute of Geomechanics, Chinese Academy of Geological Sciences. 2017. Specification for InSAR monitoring of geo-hazard[J].(T00/CAGHP01)[S]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences.
    Li L J, Yao X, Zhang Y S, et al. 2014. Sbas-insar technology based identification of slow deformation of geologic mass along section of china-pakistan highway[J]. Journal of Engineering Geology, 22(5): 921-927. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201405023.htm
    Li X T, Xu B, Huang D C. 1987. Theory and method of the regional crustal stability research[M]. Beijing: Geological Publishing House.
    Liu C, Hu H T. 1993. The "safety island" theory by multi-scale approaching and optimum seeking in engineering site selection[J]. Chinese Journal of Geological Hazards and Prevention, 4(1): 28-37, 62. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH199301004.htm
    Liu G C. 1993. Regional stability of engineering geology[M]. Changchun: Jilin University Press.
    Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364: 138-142. doi: 10.1038/364138a0
    Meng Y S, Lan H X, Li L P, et al. 2015. Characteristics of surface deformation detected by X-band SAR Interferometry over Sichuan-Tibet Grid Connection Project Area, China[J]. Remote Sensing, 7(9): 12265-12261. doi: 10.3390/rs70912265
    Monitoring and Prediction Division, China Seismological Bureau. 2009. Science research report of Wenchuan MS8.0 earthquake[R]. Beijing: Seismological Press.
    National Important Scientific Engineering Project "Crustal Movement Observation Network of China". 2008. The GPS measurement of 2008 Wenchuan MS8.0 earthquake co-seismic displacement field[J]. Chinese Science D: Earth Sciences, 38(10): 1195-1206.
    Peng J B. 1997. Engineering site stability system[M]. Xi'an: Xi'an Map Publishing House.
    Qu C Y, Shan X J, Song X G. 2011. The PS-InSAR technique and its application to the study on crustal deformation of the haiyuan fault zone[J]. Journal of Geophysics, 54(4): 984-993. doi: 10.3969/j.issn.0001-5733.2011.04.013
    Scheingross J S, Minchew B M, Mackey B H, et al. 2013. Fault-zone controls on the spatial distribution of slow-moving landslides[J]. Bulletion of the Geological Society of America, 12(5): 473-489.
    Shan X J, Liu J H, Ma C. 2004. Preliminary analysis on characteristics of coseismic deformation associated with MS8.1 western Kunlunshan pass earthquake in 2001[J].Acta Seismologica Sinica, 26(5): 474-480.
    Squarzoni C, Delacourt C, Allemand P. 2003. Nine year of spatial and temporal evolution of the Lavalette landslide observed by SAR interferometry[J]. Engineering Geology, 68(1): 53-66.
    Strozzi T, Wegmuller U. 1999. Land subsidence in Mexico City mapped by ERS differential SAR interferometry[C]//IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg: [s.n.].
    Sun Y, Tan C X. 1998. Regional crustal stability quantitative assessment[J]. Beijing: Geological Publishing House: 1-363.
    Tan C X, Sun Y, Wang R J. 1997. Quantitative assessment and zonation of regional crustal stability in the dam region of the Three Gorges Project on the Yangtze River and its vicinity[J]. Environmental Geology, 32(4): 285-295. doi: 10.1007/s002540050219
    Tang H M, Li D W, Hu X L. 2009. Faulting characteristics of Wenchuan earthquake and evaluation theory of regional crustal stability for engineering[J]. Journal of Engineering Geology, 17(2): 145-151.
    Wang S J, Li G H. 1998. Quantitative assessment and zonation of regional crustal stability in the Jinshajiang river basin[J]. Journal of Engineering Geology, 6(4): 289-299. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ804.000.htm
    Wang Y, Liao M S, Li D R, et al. 2007. Subsidence velocity retrieval from long-term coherent targets in radar interferometric stacks[J]. Chinese Journal of Geophysics, 50(2): 598-604. doi: 10.1007/s10498-006-9009-1
    Wegmüller U, Werner C, Strozzi T, et al. 2004. "Multi-temporal interferometric point target analysis, "in Analysis of Multi-Temporal Remote Sensing Images[M]//Smits P, Bruzzone L. Singapore: World Scientific, ser. Series in Remote Sensing: 136-144.
    Werner C, Wegmüller U, Strozzi T. 2003. Interferometric point target analysis for deformation mapping[C]//Proc. IGARSS. Toulouse, France: [s.n.]: 4362-4364.
    Wu Z H, Hu D G, Wu Z H. 2009. Research of the active faults along Qinghai-Tibet railway and stress strain monitoring[M]. Beijing: Seismological Press.
    Yao X, Li L J, Zhang Y S, et al. 2017a. Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau[J]. Natural Hazards, 88(3): 1727-1740. doi: 10.1007/s11069-017-2943-y
    Yao X, Zhou Z K, Li L J, et al. 2017b. InSAR co-seismic deformation of 2017 MS7.0 Jiuzhaigou earthquake and discussion on seismogenic tectonics[J]. Journal of Geomechanics, 23(4): 507-515. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201704001.htm
    Yao X, Zhang Y S, Li L J, et al. 2016. Brief analysis of the engineering problems in west syntaxis section of china-pakistan economic corridor[J]. Journal of Engineering Geology, 24(S): 909-912.
    Yao X, Zhang Y S, Dai F C, et al. 2010. Geohazard distribution and geological activity of Wenchuan earthquake surveyed by D-InSAR[C]//Geological Active-IAEG Congress 2010. [S.L.]: CRC Press, Taylor& Francis Group: 859-869.
    Yao X, Zhang Y S, Li L L. 2015. Regional crustal stability assessment of the eastern margin of Tibetan plateau[J]. Geological Bulletin, 34(1): 32-44, 30. http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201501003.htm
    Yao X, Zhang Y S, Xiong T Y, et al. 2012. Analysis of geoseismic faults movement and aftershocks migration for Yushu earthquake based on InSAR co-seismic deformation[J]. Journal of Jilin University(Earth Science Edition), 42(2): 440-448. doi: 10.1007/s11783-011-0280-z
    Yao X. 2014. Development and problems of regional crustal stability assessment study companying with discussion of the specification compilation[J]. Geological Review, 60(1): 22-30. http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201401003.htm
    Yin Y P, Hu H T, Kang H D. 1992. Expert system of regional crustal stability assessment for major projects site selection(CRUSTAB)[M]. Beijing: Geological Publishing House.
    Yin Y, Zheng W, Liu Y, et al. 2010. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China[J]. Landslides, 7(3): 359-365. doi: 10.1007/s10346-010-0225-9
    Zhang P Z, Deng Q D, Zhang G M. 2003. Mainland China strong earthquake activity and active block[J]. Chinese Science(D: Earth Sciences), 33(S1): 12-20.
    Zhang Q, Zhao C Y, Ding X L, et al. 2009. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques[J].Chinese Journal of Geophysics, 52(5): 1214-1222.
    Zhang Y S, Yao X, Hu D G. 2012. Quantitative zoning assessment of crustal stability along the Yunnan-Tibet railway line, western China[J]. Acta Geological Sinica, 86(4): 1004-1012. doi: 10.1111/j.1755-6724.2012.00724.x
    Zhang Y S, Yao X, Ma Y S, et al. 2010. Rapid identification and emergency investigation of surface ruptures and geohazards induced by the MS7.1 Yushu earthquake[J]. Acta Geologica Sinica, 84(6): 801-813. doi: 10.1111/j.1755-6724.2010.00330.x
    Zhao C Y, Zhong L, Zhang Q, et al. 2012. Large-area landslides detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment,(124): 348-359. doi: 10.1016/j.rse.2012.05.025
    陈庆宣. 1992. 探索区域地壳稳定性评价途径[J]. 第四纪研究,(4): 289-292. doi: 10.3321/j.issn:1001-7410.1992.04.001
    单新建, 柳稼航, 马超, 2004. 2001年昆仑山口西8.1级地震同震形变场特征的初步分析[J]. 地震学报, 26(5): 474-480. doi: 10.3321/j.issn:0253-3782.2004.05.003
    杜东菊. 1986. 区域稳定两级模糊综合评判[J]. 长安大学学报(地球科学版), 8(3): 56-63. http://www.cnki.com.cn/Article/CJFDTotal-XAGX198603007.htm
    范景辉, 郭华东, 郭小方, 等. 2008. 基于相干目标的干涉图叠加方法监测天津地区地面沉降[J]. 遥感学报, 12(1): 111-118. http://www.cnki.com.cn/Article/CJFDTotal-YGXB200801015.htm
    国家重大科学工程"中国地壳运动观测网络"项目组. 2008. GPS测定的2008年汶川MS8.0级地震的同震位移场[J]. 中国科学D辑:地球科学, 38(10): 1195-1206. doi: 10.3321/j.issn:1006-9267.2008.10.003
    胡海涛, 刘传正. 1993. 区域地壳稳定性研究的后顾与前瞻[J]. 工程地质学报, 1(1): 7-13. http://www.gcdz.org/article/id/9902
    李凌婧, 姚鑫, 张永双, 等. 2014. 基于SBAS-InSAR技术的中巴公路(公格尔-墓士塔格段)地质体缓慢变形识别研究[J]. 工程地质学报, 22(5): 921-927. doi: 10.13544/j.cnki.jeg.2014.05.22
    李兴唐, 许兵, 黄鼎成, 等. 1987. 区域地壳稳定性研究理论和方法[M].北京: 地质出版社.
    刘传正, 胡海涛. 1993. 工程选址的"安全岛"多级逼近与优选理论[J]. 中国地质灾害与防治学报, 4(1): 28-37, 62. http://www.cnki.com.cn/Article/CJFDTotal-ZGDH199301004.htm
    刘国昌. 1993. 区域稳定工程地质[M]. 长春: 吉林大学出版社.
    彭建兵. 1997. 工程场地稳定性系统研究[M]. 西安: 西安地图出版社.
    屈春燕, 单新建, 宋小刚. 2011. 基于PS-InSAR技术的海原断裂带地壳形变初步研究[J]. 地球物理学报, 54(4): 984-993. doi: 10.3969/j.issn.0001-5733.2011.04.013
    孙叶, 谭成轩. 1998. 区域地壳稳定性定量化评价[M].北京: 地质出版社: 1-363.
    唐明辉, 李德威, 胡新丽. 2009. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报, 17(2): 145-151. doi: 10.3969/j.issn.1004-9665.2009.02.001
    王思敬, 李国和. 1998. 金沙江流域区域地壳稳定性分区与定量评价[J]. 工程地质学报, 6(4): 289-299. http://www.gcdz.org/article/id/9670
    王艳, 廖明生, 李德仁, 等. 2007. 利用长时间相关序列目标获取地面沉降场[J]. 地球物理学报, 50(2): 598-604. doi: 10.3321/j.issn:0001-5733.2007.02.034
    吴珍汉, 胡道功, 吴中海. 2009. 青藏铁路沿线活动断裂研究与应力-应变综合监测[M]. 北京: 地震出版社.
    姚鑫, 张永双, 李凌婧, 等. 2015. 青藏高原东缘区域地壳稳定性评价[J]. 地质通报, 34(1): 32-44. doi: 10.3969/j.issn.1671-2552.2015.01.003
    姚鑫, 张永双, 李凌婧, 等. 2016. 中巴经济走廊喀喇昆仑山区段蠕滑滑坡InSAR识别研究[J]. 工程地质学报, 24(S): 909-912. doi: 10.13544/j.cnki.jeg.2016.s1.187
    姚鑫, 张永双, 熊探宇, 等. 2012. 基于干涉雷达的玉树地震断裂运动模式与地震迁移趋势分析[J]. 吉林大学学报(地球科学版), 42(2): 440-448. doi: 10.3969/j.issn.1671-5888.2012.02.018
    姚鑫, 周振凯, 李凌婧, 等. 2017. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J]. 地质力学学报, 23(4): 507-515. doi: 10.3969/j.issn.1006-6616.2017.04.001
    姚鑫. 2014. 区域地壳稳定性评价研究进展与问题兼谈规范编制[J]. 地质论评, 60(1): 22-30. http://www.cnki.com.cn/article/cjfdtotal-dzlp201401003.htm
    殷跃平, 胡海涛, 康宏达. 1992. 重大工程选址区域地壳稳定性评价专家系统(CRUSTAB)[M]. 北京: 地质出版社.
    张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑: 地球科学), 33(S1): 12-20. doi: 10.3321/j.issn:1006-9267.2003.z1.002
    张勤, 赵超英, 丁晓利, 等. 2009. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报, 52(5): 1214-1222. doi: 10.3969/j.issn.0001-5733.2009.05.010
    中国地震局监测预报司. 2009. 汶川8.0级地震科学研究报告[R]. 北京: 地震出版社.
    中国地质科学院地质力学研究所. 2015. 活动断裂与区域地壳稳定性调查评价规范(1:50000、1:250000)(DD2015-02)[S]. 北京: 中国地质科学院地质力学研究所.
    中国地质科学院地质力学研究所. 2017. 地质灾害InSAR监测技术指南(T00/CAGHP01)[S]. 北京: 中国地质科学院地质力学研究所.
  • 加载中
图(10)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  135
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-09-12
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回