反倾边坡倾倒变形演化过程的模型试验研究

赵华 李文龙 卫俊杰 庞波

赵华, 李文龙, 卫俊杰, 庞波. 2018: 反倾边坡倾倒变形演化过程的模型试验研究. 工程地质学报, 26(3): 749-757. doi: 10.13544/j.cnki.jeg.2017-322
引用本文: 赵华, 李文龙, 卫俊杰, 庞波. 2018: 反倾边坡倾倒变形演化过程的模型试验研究. 工程地质学报, 26(3): 749-757. doi: 10.13544/j.cnki.jeg.2017-322
ZHAO Hua, LI Wenlong, WEI Junjie, PANG Bo. 2018: MODEL TEST STUDY ON TOPPLING DEFORMATION EVOLUTION PROCESS OF COUNTER-TILT SLOPE. JOURNAL OF ENGINEERING GEOLOGY, 26(3): 749-757. doi: 10.13544/j.cnki.jeg.2017-322
Citation: ZHAO Hua, LI Wenlong, WEI Junjie, PANG Bo. 2018: MODEL TEST STUDY ON TOPPLING DEFORMATION EVOLUTION PROCESS OF COUNTER-TILT SLOPE. JOURNAL OF ENGINEERING GEOLOGY, 26(3): 749-757. doi: 10.13544/j.cnki.jeg.2017-322

反倾边坡倾倒变形演化过程的模型试验研究

doi: 10.13544/j.cnki.jeg.2017-322
基金项目: 

国家自然科学基金项目 41772317

成都理工大学地质灾害防治与地质环境保护国家重点实验室自主研究课题 SKLGP2015Z015

详细信息
    作者简介:

    赵华(1976-), 女, 讲师, 从事土木工程专业科研与教学工作.Email:zhaohua@cdut.edu.cn

  • 中图分类号: P642.22

MODEL TEST STUDY ON TOPPLING DEFORMATION EVOLUTION PROCESS OF COUNTER-TILT SLOPE

  • 摘要: 以西藏扎拉水电站坝址右岸反倾边坡为工程依托,基于地质认识及相似理论建立边坡物理模型,采用分级开挖的方式模拟河谷下切作用,研究反倾岩质边坡倾倒变形的演化过程。模型开挖后变形破裂发展的过程表明:该类反倾边坡倾倒变形模式为初期卸荷回弹变形、长期重力弯曲(破裂)变形及后期蠕滑变形。通过对位移、变形速率和变形加速度变化规律的分析发现:反倾边坡倾倒变形的过程可以根据变形加速度a划分为3个演化阶段即倾倒启动阶段、稳态变形阶段和快速失稳阶段,各阶段分别对应衰减蠕变、稳态蠕变和加速蠕变的变形特征。在此基础上采用变形加速度a作为倾倒边坡稳定性判别指标,并尝试将变形加速度突破稳态蠕变上限值(aa2)作为边坡失稳预警判据。
  • 图  1  某反倾边坡的倾倒变形

    Figure  1.  Toppling deformation of a counter-tilt slope

    图  2  右坝肩边坡工程地质剖面图

    Figure  2.  Engineering geological profiles of dam abutment slope

    图  3  模型试验设计模型

    Figure  3.  Design model of model test

    图  4  边坡试验模型

    Figure  4.  Test model of slope

    图  5  百分表架设图

    Figure  5.  Erection of dial indicator

    图  6  一级开挖后试验模型变形

    Figure  6.  Deformation of the test model after first stage excavation

    图  7  一级开挖后模型示意图

    Figure  7.  The sketch of the test model after first stage excavation

    图  8  二级开挖后倾倒变形发展

    Figure  8.  Development of toppling deformation after second stage excavation

    图  9  二级开挖后模型示意图

    Figure  9.  The sketch of the test model after second stage excavation

    图  10  三级开挖后模型破坏形态

    Figure  10.  Model failure mode after the third stage excavation

    图  11  三级开挖后模型示意图

    Figure  11.  The sketch of the test model after third stage excavation

    图  12  各测点位移-时间曲线

    Figure  12.  Curves of displacement vs. time of each measuring points

    图  13  各测点变形速率-时间曲线

    Figure  13.  Curves of deformation rate vs. time of each measuring points

    图  14  1#测点加速度-时间曲线

    Figure  14.  Curve of acceleration vs. time of 1# measuring point

    图  15  2#测点加速度-时间曲线图

    Figure  15.  Curve of acceleration vs. time of 2# measuring point

    图  16  倾倒变形各演化阶段变形特征

    Figure  16.  Deformation features of each evolution stage of toppling deformation

    表  1  相似材料最终配比

    Table  1.   Final ratio of similar materials

    重晶石 石英砂 环氧树脂 聚酰胺 酒精 水泥
    0.607 0.26 0.002 0.002 0.118 0.011
    下载: 导出CSV

    表  2  原型和相似材料物理力学参数

    Table  2.   Physical and mechanical parameters of prototypes and similar materials

    指标 原型 模型
    容重/γ 26.5 kN·m-3 21.3kN·m-3
    弹性模量/E 3 GPa 15.58 MPa
    抗拉强度/σT 9 MPa 41.3 kPa
    抗压强度/σ 17MPa 107 kPa
    下载: 导出CSV

    表  3  倾倒变形稳定性判别

    Table  3.   Stability discrimination of toppling deformation

    变形指标 变形特征 稳定性
    a < a1 衰减蠕变 稳定
    a1a < a2 稳态蠕变 基本稳定
    aa2 加速蠕变 欠稳定
    下载: 导出CSV
  • Aydan T, Kawamoto. 1992. The stability of slopes and underground openings against flexural toppling and their stabilisation[J]. Rock Mechanics and Rock Engineering, 25 (3):143-165. doi: 10.1007/BF01019709
    Bao J, Li Y S, Cao G P, et al. 2011. Genetic mechanism of the toppling deformation near the dam of a hydropower station on lancang river[J]. Journal of Geological Hazards and Environment Preservation, 22(3):47-51. doi: 10.1007%2F978-3-319-09057-3_2
    Bi F F. 2013. Physical simulation study on the formation mechanism of a medium low-angle and counter-tilt slope with rigid layers on the soft[D]. Chengdu: Chengdu University of Technology.
    Cai G J, Huang R Q, Yan M, et al. 2008. Physical Simulation Study on Deformation and Failure Response of an Anti-inclined Slope during Excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (4):811-817. http://cn.bing.com/academic/profile?id=2e0654351339541c0debf3d69c8984e1&encoded=0&v=paper_preview&mkt=zh-cn
    Adhikary D P, Dyskin A V. 2007. Modelling of progressive and instantaneous failures of foliated rock slopes[J]. Rock Mechanics and Rock Engineering, 40 (4):349-362. doi: 10.1007/s00603-006-0085-8
    Huang R Q, Wang Z R, Xu Q. 1994. Analysis of deformation and failure of toppling rock slope[R]. Chengdu: Chengdu University of Technology.
    Jin R X, Ren G M. 2003. Deformation feature and numerical simulation analysis on the high anti-dip angle lithologic bedding slope[J]. The Chinese Journal of Geological Hazard and Control, 14(2):35-38. http://cn.bing.com/academic/profile?id=c1bdcca2f2dae3bdea418aa098fd4b65&encoded=0&v=paper_preview&mkt=zh-cn
    Jin X. 2016. Toppling deformation and failure mechanisms of consequent rock slope[D]. Lanzhou: Lanzhou University.
    Li B. 2015. Experimental study of rock similar material[D]. Chongqing: Chongqing University.
    Li C, Zhu J B, Wang B, et al. 2016. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (7):1407-1414. https://www.researchgate.net/publication/306147266_Critical_deformation_velocity_of_landslides_in_different_deformation_phases
    Li H, Ju N P, Zheng D, et al. 2013. Mechnisim of rockfall with crack-toppling mode at up-stream of Yangshui river basin in Guizhou province[J]. Journal of Engineering Geology, 31(2):289-296.
    Lin K. 2012. Mechanism for toppling deformation and treatment measures of marlite slope[J]. Journal of Railway Engineering Society, (5):6-10. http://cn.bing.com/academic/profile?id=231c9198a40532e92db299b37c72ca87&encoded=0&v=paper_preview&mkt=zh-cn
    Tan R J, Yang X Z, Hu R L. 2009. Review of deformation mechanism and stability analysis of anti-dipped rock slopes[J]. Rock and Soil Mechanics, 30 (S2):479-484, 523. http://cn.bing.com/academic/profile?id=daeaa1a66260bd22f9d2b1e9a779bcbe&encoded=0&v=paper_preview&mkt=zh-cn
    Xie L F. 2015. Research on characteristics and evolution mechanism of toppling deformation of anti-dip stratified rock slope[D]. Wuhan: China University of Geosciences.
    Xu Q, Tang M G, Xu K X, et al. 2008. Research on space-time evolution laws and early warning prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (6):1104-1112. http://cn.bing.com/academic/profile?id=3d90b89f29294cec4b7283c74b3e8754&encoded=0&v=paper_preview&mkt=zh-cn
    Xu Q, Zeng Y P, Qian J P, et al. 2009. Study on a improved tangential angle and the corresponding landslide pre-warllillg criteria[J]. Geological Bulletin of China, 28 (4):501-505. https://www.researchgate.net/publication/296492736_Study_on_a_improved_tangential_angle_and_the_corresponding_landslide_pre-warning_criteria
    Xu Q, Zeng Y P. 2009. Research on acceleration variation characteristics of creep landslide and early-warning prediction indicator of critical sliding[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (6):1099-1106. http://cn.bing.com/academic/profile?id=e96c82ba1cf568bf9097c33df60f8490&encoded=0&v=paper_preview&mkt=zh-cn
    Zhao Y H. 2016. Research on the formation and evolution mechanism of Zhenggang Giant landslide of Gushui Hudropower Station on Lancang River[D]. Chengdu: Chengdu University of Technology.
    Zuo B C, Chen C X, Liu X W, et al. 2005. Modeling experiment study on failure mechanism of counter-tilt rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (19):3505-3511. http://cn.bing.com/academic/profile?id=f5010a1bc69d787680c7406a0b92246e&encoded=0&v=paper_preview&mkt=zh-cn
    Zuo B C. 2004. Study on losing stability mechanics of counter-tilt rock slopes[D]. Beijing: Chinese Academy of Sciences.
    鲍杰, 李渝生, 曹广鹏, 等. 2011.澜沧江某水电站近坝库岸岩体倾倒变形的成因机制[J].地质灾害与环境保护, 22(3):47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzhyhjbh201103010
    毕芬芬. 2013. 中缓倾内上硬下软型边坡失稳机理物理模拟研究[D]. 成都: 成都理工大学.
    蔡国军, 黄润秋, 严明, 等. 2008.反倾向边坡开挖变形破裂响应的物理模拟研究[J].岩石力学与工程学报, 27 (4):811-817. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200804022
    黄润秋, 王峥嵘, 许强. 1994. 反倾向岩质边坡变形破坏规律分析[R]. 成都: 成都理工大学.
    金仁祥, 任光明. 2003.陡倾角反倾层状岩质边坡变形特征数值模拟验证[J].中国地质灾害与防治学报, 14(2):35-38. http://cdmd.cnki.com.cn/Article/CDMD-10710-1015803104.htm
    金星. 2016. 顺层岩质斜坡倾倒变形破坏机理研究[D]. 兰州: 兰州大学.
    李兵. 2015. 岩石相似材料的试验研究[D]. 重庆: 重庆大学.
    李聪, 朱杰兵, 汪斌, 等. 2016.滑坡不同变形阶段演化规律与变形速率预警判据研究[J].岩石力学与工程学报, 35 (7):1407-1414. http://www.cqvip.com/QK/96026X/201607/669566692.html
    李霍, 巨能攀, 郑达, 等. 2013.贵州上洋水河流域拉裂-倾倒型崩塌机理研究[J].工程地质学报, 31(2):289-296. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_gcdzxb201302015
    林葵. 2012.泥灰岩边坡倾倒变形机理及处治措施[J].铁道工程学报, (5):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdgcxb201205002
    谭儒蛟, 杨旭朝, 胡瑞林. 2009.反倾岩体边坡变形机制与稳定性评价研究综述[J].岩土力学, 30 (S2):479-484, 523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2009z2103
    谢良甫. 2015. 反倾层状岩质斜坡倾倒变形特征及演化机理研究[D]. 武汉: 中国地质大学.
    许强, 曾裕平, 钱江澎, 等. 2009.一种改进的切线角及对应的滑坡预警判据[J].地质通报, 28 (4):501-505. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200904011
    许强, 曾裕平. 2009.具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究[J].岩石力学与工程学报, 28 (6):1099-1106. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yslxygcxb200906003
    许强, 汤明高, 徐开祥, 等. 2008.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 27 (6):1104-1112. http://www.cqvip.com/qk/96026X/200806/27489370.html
    赵永辉. 2016. 澜沧江古水水电站争岗巨型滑坡形成机理及演化过程研究[D]. 成都: 成都理工大学.
    左保成, 陈从新, 刘小巍, 等. 2005.反倾岩质边坡破坏机理模型试验研究[J].岩石力学与工程学报, 24 (19):3505-3511. doi: 10.3321/j.issn:1000-6915.2005.19.017
    左保成. 2004. 反倾岩质边坡破坏机理研究[D]. 北京: 中国科学院研究生院.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  2188
  • HTML全文浏览量:  586
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 录用日期:  2017-11-09
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回