RESEARCH PROGRESSES IN REMEDIATION OF HEAVY METAL CONTAMINATED SOILS WITH BIOCHAR
-
摘要: 随着城市化进程的加快及工业生产的迅速发展,土壤重金属污染日益加剧,对生态环境造成严重的危害。生物炭是缺氧或限氧条件下加热生物质制得的高度芳香化富含碳的固态物质,其在重金属污染土修复方面具有显著效果,受到广泛关注。基于近些年来国内外围绕生物炭修复重金属污染土所取得的研究成果,分别从生物炭的制备及性质、修复效果及其影响因素、修复机理等方面总结了该领域的研究现状及进展,取得如下主要认识:(1)生物炭具有价格低廉,修复效率高,改良土壤、环境友好等优势;(2)生物炭的理化性质主要受原材料和热解温度的影响,采用活化、磁化、氧化和消化等方法能改善生物炭的性质,提高修复效率;(3)生物炭对土壤中重金属迁移性和生物有效性的影响包括两个方面:固定重金属减少生物有效性或者迁移重金属增加生物有效性,后者可通过改性方法来降低重金属的迁移性和生物有效性;(4)生物炭对土体的固化效果一般,但可与其他固化材料共同使用,以改善土体的力学性质;(5)生物炭修复机理固定重金属的效果为:沉淀作用>络合作用>静电作用,离子交换>物理吸附。最后,针对该领域的研究现状,提出了未来的研究重点和方向,主要包括:建立划分生物炭的统一标准;探讨生物炭对多种重金属共同污染的修复效率;阐明生物炭吸附重金属的机理及其贡献率;扩大研究尺度;开展基于生物炭的固化试验及力学性质研究。Abstract: With the acceleration of the urbanization process and the rapid development of industrial production, soil heavy metal pollution is increasing seriously, which is causing serious harm to the ecological environment. Biochar is a solid material containing high fractions of aromatic functional groups and carbon. It is produced through thermal degradation under anoxic or oxygen-limited conditions. It attracts extensive attention because of significant effect in the remediation of soil contaminated with heavy metals. Based on the recent research achievements on biochar remediate heavy metals contaminated soil at home and abroad, the advances of some important aspects on, the research current situation and progress are summarized from several important aspects. They include production and properties of biochar, remediation effect and influencing factors and adsorption mechanism. The follows are shown. (1)Biochar has the advantages of low prices, high efficiency, soil improvement and friendly environment. (2)The physicochemical properties of biochar are affected by biomass materials and pyrolysis temperatures. Activation, magnetization, oxidation and digestion can improve the properties of biochar and efficiency of remediation. (3)The effect of biochar on heavy metal mobility and bioavailability includes two aspects:immobilizing heavy metals to reduce bioavailability or mobilizing heavy metals to increase bioavailability. The latter can be modified to reduce the mobility and bioavailability of heavy metals. (4)The effect of biochar on soil solidification is general, combining with other solidifying materials to improve the mechanical properties of solidified soil. (5)The effect remediation mechanism of biochar immobilized heavy metals is ranked as follows:precipitation > complexation > electrostatic interaction and ion exchange > physical adsorption. Finally, on account of research status in this field, some important research emphases and directions in the future are proposed. They mainly include establishing a uniform classification criterion of biochar, exploring the efficiency of biochar on multi-heavy metals pollution, illustrating the mechanism and contribution rate of adsorbing heavy metals by biochar, expanding the research scale, and carrying out solidification experiment and mechanical property research based on biochar.
-
Key words:
- Biochar soil /
- Remediation /
- Heavy metal /
- Mobility /
- Bioavailability
-
图 2 热裂解技术制造生物炭和生物燃料(孙红文,2013)
Figure 2. Pyrolysis technology produce biochar and biofuel(Sun, 2013)
图 3 重金属的迁移性、生物有效性和修复效果之间关系的示意图(Bolan et al., 2014)
Figure 3. Schematic diagram illustrating the relationship between mobilization, bioavailability and remediation effect of heavy metals(Bolan et al., 2014)
图 4 采用(a)2 wt%, (b)5 wt%的石灰掺量和10 wt%、20 wt%的高炉矿渣掺量处理生物炭混合土养护不同龄期的无侧限抗压强度(Haque et al., 2014)
Figure 4. Time-dependent unconfined compressive strength of synthetic biochar mixed clays treated with: (a)2 wt%, (b)5 wt% lime and 10 wt%, 20 wt% GGBS(Haque et al., 2014)
图 5 生物炭与重金属的作用机理(改自Ahmad et al., 2014)
Figure 5. Mechanisms of biochar interactions with heavy metals (modified from Ahmad et al., 2014)
表 1 生物炭生产技术和产品分布
Table 1. Biochar production technology and product distribution
制备方法 温度
/℃加热速率
/℃·min-1停留时间 生物炭
/%生物油
/%气体
/%主要产品 参考文献 慢速热裂解 300~800 5~7 >1 h 25~34 28~36 19~25 生物炭 Şensöz et al., 2008; Qian et al., 2015 快速热裂解 400~600 1000 ~1s 12 75 13 生物油 Bridgwater, 2007, 2012; Qian et al., 2015 气化 750~1500 100~200 10~20s 10 5 85 合成气 Bridgwater,2007; 何绪生等,2011 水热炭化 160~350 — 1~12h 37~60 5~20 2~5 化工产品 何绪生等,2011; Lehmann et al., 2015 表 2 不同热解类型和温度制备生物炭的平均元素组成、pH、比表面积以及阳离子交换容量(CEC)(Lehmann et al., 2015)
Table 2. Average biochar elemental composition, pH, surface area and cation exchange capacity(CEC) based on pyrolysis type and pyrolysis temperature(Lehmann et al., 2015)
热裂解类型 热解温度
/℃C
/%N
/%P
/g·kg-1K
/g·kg-1S
/g·kg-1Ca
/g·kg-1Mg
/g·kg-1Fe
/g·kg-1Cu
/g·kg-1pH 比表面积
/m2·g-1CEC
/mmolc·kg-1快速 300~499 61 0.92 31.5 51.2 0.23 58 1.79 — — 8.33 44.74 28.8 快速 500~699 51.1 0.72 0.3 3.4 0.37 3.7 1.5 1.4 17 7.7 40.99 — 快速 700~900 59.1 0.34 3.39 105.5 — 92.8 120 7.93 — 10.1 178.2 — 慢速 <300 53.6 1.25 11.4 4.9 7.05 1.1 — 0.05 5.16 5.01 1.686 327 慢速 300~499 60 1.71 11.9 17 13 43.4 6.25 2.11 289 7.81 81.32 268 慢速 500~699 62.8 1.17 12.5 15.6 2.3 54.4 7.19 1.9 124 9.09 180.5 218 慢速 700~900 64.2 1.53 43.7 53.2 6.57 49.5 20 4.32 509 10.1 189.8 41.5 “—”表示低于检测水平或未被检出 表 3 生物质原料对土壤中重金属迁移性的影响
Table 3. Effect of biomass on mobility of heavy metals in soil
生物质原料 重金属元素 作用效果 参考文献 松木 Pb,Cd 生物炭对Pb、Cd的固化率可达36.9%和30.86%,减少重金属的累计淋出量 朱庆祥,2011 果树 Cd,Cr,Pb,Zn,Ni,Tl,Cu 果树生物炭的施加使尾矿土的pH和CEC升高,显著降低尾矿中Cd、Cr和Pb的迁移性,而对Zn、Ni和Tl的迁移性没有明显影响,甚至还增加了Cu的迁移性 Fellet et al., 2011 硬木 Cd,Zn 生物炭引起土壤pH升高,淋出液中Cd和Zn的浓度分别减少了300倍和45倍 Beesley et al., 2011 表 4 修复材料对土壤中重金属生物有效性的影响
Table 4. Effect of remediation material on bioavailability of heavy metals in soil
修复材料 重金属元素 作用效果 参考文献 鸡粪生物炭 Cu 降低了土壤和土壤孔隙水中Cu的浓度,同时减少了植物中Cu的可交换态含量,增加了植物中Cu的有机物结合态含量和残渣态含量 Meier et al., 2017 松木生物炭 Pb,Cd 增加了土壤pH,引起了重金属的酸可提取态、Fe-Mn氧化结合态和有机结合态含量的降低,同时残渣态含量升高,进而降低了重金属的生物有效性利用率 朱庆祥,2011 生物炭、石灰 Cd,Zn 土壤中可交换态Cd的含量出现了不同程度的降低,且降低幅度为:生物炭与石灰混合>石灰>生物炭,导致Cd生物有效性的降低 高译丹等,2014 果树生物炭、堆肥 As,Cd,Cu,Pb,Zn 生物炭的施加能显著降低游离重金属的浓度,堆肥中溶解有机碳含量对重金属的迁移性有显著的影响,联合修复能有效降低重金属的生物有效性 Beesley et al., 2014 表 5 生物炭老化对土壤中重金属迁移性和生物有效性的影响
Table 5. Effect of biochar aging on mobility and bioavailability of heavy metals in soil
修复材料 修复对象 作用效果 参考文献 木质生物炭 农业土壤 施加两年后pH增加了0.32,但施加三年后pH反而降低了0.26,生物炭的石灰效应及其所引起的重金属修复作用可能是短暂的 Jones et al., 2012 生物炭 Cd污染水稻和小麦土 施加两年后水稻和小麦土的CaCl2浸提液中Cd2+浓度最高降低了52.5%和57%,水稻和小麦吸收Cd的总量最高降低了54.2%和37.3% Cui et al., 2011, 2012 生物炭 Cd,Pb稻田土 施加三年后增加了土壤的pH和总有机碳含量,降低了土壤浸出的Cd和Pb浓度 Bian et al., 2014 硬木生物炭和堆肥 Ni,Zn污染场地 施加三年后浸提液中Ni2+和Zn2+浓度分别最高降低了98%和97%,显著增加Ni和Zn的残渣态含量,从而降低Ni和Zn的迁移性和生物有效性 Shen et al., 2016 -
Ahmad M, Rajapaksha A U, Lim J E, et al. 2014. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 99(3):19-33. http://europepmc.org/abstract/MED/24289982 Alpaslan B, Yukselen M A. 2002. Remediation of lead contaminated soils by stabilization/solidification[J]. Water, Air, & Soil Pollution, 133(1):253-263. doi: 10.1023/A%3A1012977829536 Anawar H M, Akter F, Solaiman Z M, et al. 2015. Biochar:an emerging panacea for remediation of soil contaminants from mining, industry and sewage wastes[J]. Pedosphere, 25(5):654-665. doi: 10.1016/S1002-0160(15)30046-1 Beesley L, Inneh O S, Norton G J, et al. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution, 186(3):195-202. http://www.ncbi.nlm.nih.gov/pubmed/24388869 Beesley L, Marmiroli M. 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 159(2):474-480. http://europepmc.org/abstract/MED/21109337 Bian R, Joseph S, Cui L Q, et al. 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 272(4):121-128. http://www.sciencedirect.com/science/article/pii/S0304389414001939 Bolan N, Kunhikrishnan A, Thangarajan R, et al. 2014. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 266(4):141-166. http://www.sciencedirect.com/science/article/pii/S0304389413009485 Brewer C E, Chuang V J, Masiello C A, et al. 2014. New approaches to measuring biochar density and porosity[J]. Biomass and Bioenergy, 66(7):176-185. http://www.sciencedirect.com/science/article/pii/S0961953414001883 Bridgwater A V. 2007. The production of biofuels and renewable chemicals by fast pyrolysis of biomass[J]. International Journal of Global Energy Issues, 27(2):160-203. doi: 10.1504/IJGEI.2007.013654 Bridgwater A V. 2012. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 38(2):68-94. http://www.sciencedirect.com/science/article/pii/S0961953411000638 Cantrell K B, Hunt P G, Uchimiya M, et al. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 107(2):419-428. http://europepmc.org/abstract/MED/22237173 Cao X D, Harris W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 101(14):5222-5228. doi: 10.1016/j.biortech.2010.02.052 Cao X D, Ma L N, Gao B, et al. 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 43(9):3285-3291. doi: 10.1021/es803092k Cao X D, Ma L N, Liang Y, et al. 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science and Technology, 45(11):4884-4889. doi: 10.1021/es103752u Chan K Y, Van Zwieten L, Meszaros I, et al. 2008. Using poultry litter biochars as soil amendments[J]. Soil Research, 46(5):437-444. doi: 10.1071/SR08036 Chan K Y, Van Zwieten L, Meszaros I, et al. 2007. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 45(8):629-634. doi: 10.1071/SR07109 Chen B L, Chen Z M, Lü S F. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 102(2):716-723. doi: 10.1016/j.biortech.2010.08.067 Choppala G K, Bolan N S, Megharaj M, et al. 2012. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils[J]. Journal of Environmental Quality, 41(4):1175-1184. doi: 10.2134/jeq2011.0145 Choppala G, Bolan N, Kunhikrishnan A, et al. 2015. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils[J]. Environmental Science and Pollution Research, 22(12):8969-8978. http://europepmc.org/abstract/med/23539209 Conner J R, Hoeffner S L. 1998. The history of stabilization/solidification technology[J]. Critical Reviews in Environmental Science and Technology, 28(4):325-396. doi: 10.1080/10643389891254241 Cui L Q, Li L Q, Mail A Z, et al. 2011. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil:A two-year field experiment[J]. Bioresources, 6(3):2605-2618. http://www.oalib.com/paper/2732224 Cui L Q, Cheng K, Li L Q, et al. 2012. The reduction of wheat Cd uptake in contaminated soil via biochar amendment:A two-year field experiment[J]. Bioresources, 7(4):5666-5676. doi: 10.15376/biores.7.4.5666-5676 Dermatas D, Meng X G. 2003. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 70(3-4):377-394. doi: 10.1016/S0013-7952(03)00105-4 Dong X L, Ma L Q, Li Y C. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 190(1):909-915. http://www.sciencedirect.com/science/article/pii/S0304389411004468 Du Y J, Jin F, Liu S Y, et al. 2011. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 32(1):116-124. El-Shafey E I. 2010. Removal of Zn(Ⅱ) and Hg(Ⅱ) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk[J]. Journal of Hazardous Materials, 175(1):319-327. http://www.ncbi.nlm.nih.gov/pubmed/19883976 Enders A, Hanley K, Whitman T, et al. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 114:644-653. doi: 10.1016/j.biortech.2012.03.022 Fan L B, Zhang D W, Deng Y F, et al. 2012. Experimental study of stress-strain characteristics of cement treated chlorate salt rich clays[J]. Journal of Engineering Geology, 20(4):621-626. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201204022.htm Fellet G, Marchiol L, Delle Vedove G, et al. 2011. Application of biochar on mine tailings:Effects and perspectives for land reclamation[J]. Chemosphere, 83(9):1262-1267. doi: 10.1016/j.chemosphere.2011.03.053 Gao Y D, Liang C H, Fei Z J, et al. 2014. Effects of biochar and lime on the fraction transform of cadmium in contaminated soil[J]. Journal of Soil and Water Conservation, 28(2):258-261. http://en.cnki.com.cn/Article_en/CJFDTotal-TRQS201402049.htm Gao K F, Jian M F, Yu H P, et al. 2016. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk[J]. Environmental Chemistry, 35(8):1663-1669. http://en.cnki.com.cn/Article_en/CJFDTotal-HJHX201608016.htm Glaser B, Haumaier L, Guggenberger G, et al. 1998. Black carbon in soils:the use of benzenecarboxylic acids as specific markers[J]. Organic Geochemistry, 29(4):811-819. doi: 10.1016/S0146-6380(98)00194-6 Haque A, Tang C K, Islam S, et al. 2014. Biochar sequestration in lime-slag treated synthetic soils:A green approach to ground improvement[J]. Journal of Materials in Civil Engineering, 26(12):06014024. doi: 10.1061/(ASCE)MT.1943-5533.0001113 Hartley W, Dickinson N M, Riby P, et al. 2009. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus[J]. Environmental Pollution, 157(10):2654-2662. doi: 10.1016/j.envpol.2009.05.011 Harvey O R, Herbert B E, Rhue R D, et al. 2011. Metal interactions at the biochar-water interface:Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science and Technology, 45(13):5550-5556. doi: 10.1021/es104401h Hass A, Gonzalez J M, Lima I M, et al. 2012. Chicken manure biochar as liming and nutrient source for acid Appalachian soil[J]. Journal of Environmental Quality, 41(4):1096-1106. doi: 10.2134/jeq2011.0124 He X C, Geng Z C, She D, et al. 2011. Implications of production and agricultural utilization of biochar and its international dynamics[J]. Transactions of the CSAE, 27(2):1-7. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biochar Hossain M K, Strezov V, Chan K Y, et al. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 92(1):223-228. doi: 10.1016/j.jenvman.2010.09.008 Houben D, Evrard L, Sonnet P. 2013. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 92(11):1450-1457. doi: 10.1016/j.chemosphere.2013.03.055 Hu B, Wang K, Wu L H, et al. 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 22(7):813-828. doi: 10.1002/adma.v22:7 Inyang M I, Gao B, Yao Y, et al. 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 46(4):406-433. doi: 10.1080/10643389.2015.1096880 Inyang M, Gao B, Ding W C, et al. 2011. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse[J]. Separation Science and Technology, 46(12):1950-1956. doi: 10.1080/01496395.2011.584604 Inyang M, Gao B, Pullammanappallil P, et al. 2010. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 101(22):8868-8872. doi: 10.1016/j.biortech.2010.06.088 Inyang M, Gao B, Yao Y, et al. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. Bioresource Technology, 110(2):50-56. Jones D L, Rousk J, Edwards-Jones G, et al. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 45(2):113-124. http://www.sciencedirect.com/science/article/pii/S0038071711003865 Kong L L, Liu W T, Zhou Q X. 2014. Biochar:an effective amendment for remediating contaminated soil[M]. New York:Springer International Publishing. Kumar S, Loganathan V A, Gupta R B, et al. 2011. An assessment of U(Ⅵ)removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management, 92(10):2504-2512. doi: 10.1016/j.jenvman.2011.05.013 Lee J W, Kidder M, Evans B R, et al. 2010. Characterization of biochars produced from cornstovers for soil amendment[J]. Environmental Science and Technology, 44(20):7970-7974. doi: 10.1021/es101337x Lehmann J, Joseph S, Lehmann J, et al. 2015. Biochar for environmental management[M]. 2nd ed. London:Routledge. Li Y C, Shao J, Wang X H, et al. 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component(furfural) adsorption[J]. Energy and Fuels, 28(8):5119-5127. doi: 10.1021/ef500725c Liu J J, Zha F S, Wang L B, et al. 2016. Leaching properties of lead contaminated soils treated by soda residue[J]. Journal of Southeast University(Natural Science Edition), 46(S1):94-98. http://www.en.cnki.com.cn/Article_en/CJFDTotal-DNDX2016S1017.htm Liu Z G, Zhang F S, Wu J Z. 2010. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 89(2):510-514. doi: 10.1016/j.fuel.2009.08.042 Lu H L, Zhang W H, Yang Y X, et al. 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 46(3):854-862. doi: 10.1016/j.watres.2011.11.058 Meier S, Curaqueo G, Khan N, et al. 2017. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil[J]. Journal of Soils And Sediments, 17(3):741-750. doi: 10.1007/s11368-015-1256-6 Méndez A, Gómez A, Paz-Ferreiro J, et al. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil[J]. Chemosphere, 89(11):1354-1359. doi: 10.1016/j.chemosphere.2012.05.092 Mohan D, Pittman C U, Steele P H. 2006. Pyrolysis of wood/biomass for bio-oil:A critical review[J]. Energy and Fuels, 20(3):848-889. doi: 10.1021/ef0502397 Moon D H, Grubb D G, Reilly T L. 2009. Stabilization/solidification of selenium-impacted soils using portland cement and cement kiln dust[J]. Journal of Hazardous Materials, 168(2-3):944-951. doi: 10.1016/j.jhazmat.2009.02.125 Mukherjee A, Zimmerman A R, Harris W. 2011. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 163(3):247-255. http://www.sciencedirect.com/science/article/pii/S0016706111001091 Nathanail C P, Bardos R P. 2004. Reclamation of contaminated land[M]. New Jersey:John Wiley & Sons. Peng X H, Ye L L, Wang C H, et al. 2011. Temperature-and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil and Tillage Research, 112(2):159-166. doi: 10.1016/j.still.2011.01.002 Qian K Z, Kumar A, Zhang H L, et al. 2015. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 42(1):1055-1064. http://www.sciencedirect.com/science/article/pii/S1364032114008995 Qiu Y P, Cheng H Y, Xu C, et al. 2008. Surface characteristics of crop-residue-derived black carbon and lead(Ⅱ)adsorption[J]. Water Research, 42(3):567-574. doi: 10.1016/j.watres.2007.07.051 Rajapaksha A U, Chen S S, Tsang D C W, et al. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water:Potential and implication of biochar modification[J]. Chemosphere, 148(27):276-291. http://www.sciencedirect.com/science/article/pii/S004565351630042X Rajkovich S, Enders A, Hanley K, et al. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 48(3):271-284. doi: 10.1007/s00374-011-0624-7 Sanchez-Polo M, Rivera-Utrilla J. 2002. Adsorbent-adsorbate interactions in the adsorption of Cd(Ⅱ) and Hg(Ⅱ)on ozonized activated carbons[J]. Environmental Science and Technology, 36(17):3850-3854. doi: 10.1021/es0255610 Schimmelpfennig S, Glaser B. 2012. One step forward toward characterization:some important material properties to distinguish biochars[J]. Journal of Environmental Quality, 41(4):1001-1013. doi: 10.2134/jeq2011.0146 Şensöz S, Angin D. 2008. Pyrolysis of safflower(Charthamus tinctorius L.)seed press cake:Part 1. The effects of pyrolysis parameters on the product yields[J]. Bioresource Technology, 99(13):5492-5497. doi: 10.1016/j.biortech.2007.10.046 Sevilla M, Fuertes A B. 2009. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 47(9):2281-2289. doi: 10.1016/j.carbon.2009.04.026 Shen Z, Som A M, Wang F, et al. 2016. Long-term impact of biochar on the immobilisation of nickel(Ⅱ) and zinc(Ⅱ) and the revegetation of a contaminated site[J]. Science of the Total Environment, 542(4):771-776. http://europepmc.org/abstract/MED/26551277 Sun Y N, Gao B, Yao Y, et al. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chemical Engineering Journal, 240:574-578. doi: 10.1016/j.cej.2013.10.081 Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace-metals[J]. Analytical Chemistry, 51(7):844-851. doi: 10.1021/ac50043a017 Tong X J, Li J Y, Yuan J H, et al. 2011. Adsorption of Cu(Ⅱ)by biochars generated from three crop straws[J]. Chemical Engineering Journal, 172(2):828-834. http://www.sciencedirect.com/science/article/pii/S1385894711008102 Uchimiya M, Chang S, Klasson K T. 2011. Screening biochars for heavy metal retention in soil:role of oxygen functional groups[J]. Journal of Hazardous Materials, 190(1):432-441. http://europepmc.org/abstract/MED/21489689 Wang P, Tang C S, Sun K Q, et al. 2016. Advances on solidification/stabilization of sludge disposal[J]. Journal of Engineering Geology, 24(4):649-660. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201604026.htm Wang S S, Gao B, Zimmerman A R, et al. 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J]. Bioresource Technology, 175(1):391-395. http://europepmc.org/abstract/med/25459847 Warren G P, Alloway B J, Lepp N W, et al. 2003. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides[J]. Science of the Total Environment, 311(1-3):19-33. doi: 10.1016/S0048-9697(03)00096-2 Wang Y F. 2010. Study on preparation of biochar carrier and the influence on biofilm forming[D]. Chongqing: Chongqing University. Xu X Y, Cao X D, Zhao L. 2013. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:Role of mineral components in biochars[J]. Chemosphere, 92(8):955-961. doi: 10.1016/j.chemosphere.2013.03.009 Xue Y W, Gao B, Yao Y, et al. 2012. Hydrogen peroxide modification enhances the ability of biochar(hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals:Batch and column tests[J]. Chemical Engineering Journal, 200-202(34):673-680. http://www.sciencedirect.com/science/article/pii/S1385894712008467 Yang A W, Wang T, Xu Z L. 2015. Experimental study on lime and its additional agent to cure tianjing marine soft soil[J]. Journal of Engineering Geology, 23(5):996-1004. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gcdzxb201505026 Yao Y, Gao B, Inyang M, et al. 2011. Biochar derived from anaerobically digested sugar beet tailings:Characterization and phosphate removal potential[J]. Bioresource Technology, 102(10):6273-6278. doi: 10.1016/j.biortech.2011.03.006 Yuan J H, Xu R K, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 102(3):3488-3497. doi: 10.1016/j.biortech.2010.11.018 Zeng H, Xu C, Zhou H, et al. 2012. Effects of mixed curing agents on the remediation of soils with heavy metal pollution[J]. Environmental Chemistry, 31(9):1368-1374. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX201209014.htm Zhang Z R. 2014. A preliminary study on the effect of biochar on soil physical properties[D]: Zhejiang: Zhejiang University. Zhu Q X. 2011. Experimental study on lead and cadmium contaminated soil remediation with biochar[D]. Chongqing: Chongqiang University. 杜延军, 金飞, 刘松玉, 等. 2011.重金属工业污染场地固化/稳定处理研究进展[J].岩土力学, 32(1):116-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201101019 范礼彬, 章定文, 邓永锋, 等. 2012.氯盐对水泥固化土应力-应变特性影响分析[J].工程地质学报, 20(4):621-626. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201204022&dbname=CJFD&dbcode=CJFQ 高凯芳, 简敏菲, 余厚平, 等. 2016.裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J].环境化学, 35(8):1663-1669. doi: 10.7524/j.issn.0254-6108.2016.08.2016010607 高译丹, 梁成华, 裴中健, 等. 2014.施用生物炭和石灰对土壤镉形态转化的影响[J].水土保持学报, 28(2):258-261. http://mall.cnki.net/magazine/Article/HJJZ201408067.htm 何绪生, 耿增超, 佘雕, 等. 2011.生物炭生产与农用的意义及国内外动态[J].农业工程学报, 27(2):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201102002.htm 刘晶晶, 查甫生, 王连斌, 等. 2016.碱渣固化铅污染土淋滤特性试验研究[J].东南大学学报(自然科学版), 46(增刊1):94-98. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201510019.htm 孙红文. 2013.生物炭与环境[M].北京:化学工业出版社. 王鹏, 唐朝生, 孙凯强, 等. 2016.污泥处理的固化/稳定化技术研究进展[J].工程地质学报, 24(4):649-660. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201604026&dbname=CJFD&dbcode=CJFQ 王永芳. 2010. 生物碳质填料制备及挂膜性能初步研究[D]. 重庆: 重庆大学. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010216713.htm 杨爱武, 王韬, 许再良. 2015.石灰及其外加剂固化天津滨海软土的试验研究[J].工程地质学报, 23(5):996-1004. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201505029&dbname=CJFD&dbcode=CJFQ 曾卉, 徐超, 周航, 等. 2012.几种固化剂组配修复重金属污染土壤[J].环境化学, 31(9):1368-1374. http://www.oalib.com/paper/4729377 张峥嵘. 2014. 生物炭改良土壤物理性质的初步研究[D]. 浙江: 浙江大学. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014178648.htm 朱庆祥. 2011. 生物炭对Pb、Cd污染土壤的修复试验研究[D]. 重庆: 重庆大学. http://cdmd.cnki.com.cn/Article/CDMD-10611-1011294393.htm -