大型层状基岩滑坡软弱夹层演化特征研究——以重庆武隆鸡尾山滑坡为例

朱赛楠 殷跃平 李滨

朱赛楠, 殷跃平, 李滨. 2018: 大型层状基岩滑坡软弱夹层演化特征研究——以重庆武隆鸡尾山滑坡为例. 工程地质学报, 26(6): 1638-1647. doi: 10.13544/j.cnki.jeg.2017-518
引用本文: 朱赛楠, 殷跃平, 李滨. 2018: 大型层状基岩滑坡软弱夹层演化特征研究——以重庆武隆鸡尾山滑坡为例. 工程地质学报, 26(6): 1638-1647. doi: 10.13544/j.cnki.jeg.2017-518
ZHU Sainan, YIN Yueping, LI Bin. 2018: EVOLUTION CHARACTERISTICS OF WEAK INTERCALATION IN MASSIVE LAYERED ROCKSLIDES-A CASE STUDY OF JIWEISHAN ROCKSLIDE IN WULONG, CHONGQING. JOURNAL OF ENGINEERING GEOLOGY, 26(6): 1638-1647. doi: 10.13544/j.cnki.jeg.2017-518
Citation: ZHU Sainan, YIN Yueping, LI Bin. 2018: EVOLUTION CHARACTERISTICS OF WEAK INTERCALATION IN MASSIVE LAYERED ROCKSLIDES-A CASE STUDY OF JIWEISHAN ROCKSLIDE IN WULONG, CHONGQING. JOURNAL OF ENGINEERING GEOLOGY, 26(6): 1638-1647. doi: 10.13544/j.cnki.jeg.2017-518

大型层状基岩滑坡软弱夹层演化特征研究——以重庆武隆鸡尾山滑坡为例

doi: 10.13544/j.cnki.jeg.2017-518
基金项目: 

国家自然科学基金项目 41472295

中国地质调查局项目 12120114079101

中国地质调查局项目 DD20179609

详细信息
    作者简介:

    朱赛楠(1984-), 男, 博士, 在站博士后, 主要从事工程地质与地质灾害等研究.Email:6057817@qq.com

    通讯作者:

    殷跃平(1960-), 男, 博士, 研究员, 主要从事工程地质与地质灾害等研究.Email:yyueping@mail.cgs.gov.cn

  • 中图分类号: P642.22

EVOLUTION CHARACTERISTICS OF WEAK INTERCALATION IN MASSIVE LAYERED ROCKSLIDES-A CASE STUDY OF JIWEISHAN ROCKSLIDE IN WULONG, CHONGQING

  • 摘要: 软弱夹层经过长期地质历史演化,性质劣化后形成滑带,对大型层状基岩滑坡的稳定性起重要的控制作用。为了查清软弱夹层形成滑带的演化过程,以重庆武隆鸡尾山滑坡为例,对比研究了山体内软弱夹层的发育规律,将其划分为原生软岩、层间剪切带和滑带3个阶段,并通过岩矿组分含量、物理性质、微结构、物理化学性质和蠕变力学性质试验分析了3个阶段的演化特征。结果表明:从矿物成分演化过程来看,黏土矿物含量增加趋势明显,均值从4.4%增加到16.9%;从微结构演化过程来看,微结构由致密变得疏松,孔隙及节理裂隙增多,密度降低了5%~6%,孔隙率升高了108%;从物理化学性质演化过程来看,交换性盐基总含量在原岩中最高,其次是滑带,层间剪切带最低,有机质含量逐渐增大,整个演化环境呈弱碱性。从蠕变剪切强度演化过程来看,软弱夹层的内摩擦角由57.58°降低到29.63°,黏聚力由585 kPa降低到96 kPa。在此基础上,对鸡尾山滑坡驱动块体最大主剖面的下滑推力进行分析,下滑推力随着长期剪切强度参数的降低而增大,当内摩擦角φ < 25°,黏聚力c < 129 kPa时,下滑推力大于0,驱动块体失稳。该研究对受软弱夹层控制的层状基岩滑坡的发育发展过程、失稳机理研究提供了重要的借鉴意义。
  • 图  1  鸡尾山滑坡遥感影像图

    Figure  1.  Remote sensing map of the Jiweishan landslide

    图  2  软弱夹层照片

    Figure  2.  Photograph of the weak intercalations

    图  3  软弱夹层分布剖面图(Ⅰ-Ⅰ′)

    Figure  3.  Longitudinal profile Ⅰ-Ⅰ′ showing the distribution of the weak intercalations

    图  4  等距性分布特征

    Figure  4.  Characteristics of equidistant development

    图  5  层间软弱夹层分布发育特征

    Figure  5.  Characteristics development between the layers

    图  6  原生软岩发育特征

    Figure  6.  Characteristics of the original soft rock

    图  7  层间剪切带发育特征

    Figure  7.  Characteristics of the interlayer shear zone

    图  8  鸡尾山型软弱夹层演化模式图

    Figure  8.  Pattern of the evolutionary stages in the Jiweishan weak intercalations

    图  9  黏土矿物含量均值演化过程

    Figure  9.  Mean values of clay mineral content

    图  10  软弱夹层主要物理性质演化过程

    Figure  10.  Evolutionary process of physical property

    图  11  软弱夹层微结构演化过程

    Figure  11.  Evolutionary process of the microstructure

    图  12  软弱夹层的蠕变剪切位移-时间曲线(σ=1.5 MPa)

    a.原生软岩; b.层间剪切带; c.滑带

    Figure  12.  Creep curves of the weak intercalations(σ=1.5 MPa)

    图  13  软弱夹层长期剪切强度的演化曲线

    Figure  13.  Curves of long-term sheer strength

    图  14  驱动块体主剖面的力学模型

    Figure  14.  Mechanics model of the main section for the driving block

    图  15  驱动块体最大主剖面的下滑推力趋势图

    Figure  15.  Image showing the trend of the residual sliding thrust of the main section of the driving block

    表  1  软弱夹层的矿物成分及含量演化过程

    Table  1.   Evolutionary process of mineral components and contents

    演化阶段 矿物含量/%
    石英 方解石 白云石 黄铁矿 黄钾铁矾 滑石 蒙脱石 绿泥石
    原生软岩 14.9 47.7 32.9 0.2 2.3 0.9 1.2
    层间剪切带 14.7 61.7 14.6 0.6 3.6 3.2 1.5
    滑带 15.3 53.5 5.6 0.5 8.2 5.8 7.3 3.8
    下载: 导出CSV

    表  2  软弱夹层物理化学性质演化过程

    Table  2.   Evolutionary process of physicochemical property

    演化阶段 交换盐基总量/meq·100g-1 阳离子/meq·100g-1 有机质/% pH
    K+ Ca2+ Na+ Mg2+ Al3+ Fe3+
    原生软岩 3.403 0.052 2.343 0.082 0.911 0.012 0.003 1.31 9.21
    层间剪切带 2.294 0.109 1.437 0.089 0.633 0.017 0.009 1.38 9.03
    滑带 2.804 0.051 1.833 0.084 0.818 0.014 0.004 2.33 8.65
      meq为毫克当量
    下载: 导出CSV

    表  3  软弱夹层的剪切蠕变试验方案

    Table  3.   Scheme of the weak intercalations shear creep test

    演化阶段 正应力σ/MPa 剪切面积A/cm2 分级剪应力q/MPa
    1 2 3 4 5 6
    原生软岩 0.7 359 0.489 0.869 1.307 1.722 2.173
    1.5 320 0.669 1.513 2.262 2.909 3.835
    2.3 538 0.839 1.732 2.436 3.351 4.221 4.952
    层间剪切带 0.7 312 0.221 0.424 0.655 0.858 1.079 1.301
    1.5 291 0.500 1.000 1.375 1.468
    2.3 347 0.839 1.257 1.691 2.009 2.518 2.922
    滑带 0.5 272 0.112 0.187 0.284 0.385 0.586
    1.0 251 0.247 0.488 0.738 0.899
    1.5 298 0.330 0.680 1.020 1.330
    下载: 导出CSV

    表  4  软弱夹层长期剪切强度参数

    Table  4.   Parameters of long term shear strength

    演化阶段 正应力σ /MPa 长期剪切强度/MPa φ /(°) c /MPa
    原生软岩 0.7 1.725 57.6 0.585
    1.5 2.909
    2.3 4.218
    层间剪切带 0.7 1.080 42.0 0.318
    1.5 1.375
    2.3 2.500
    滑带 0.5 0.423 29.6 0.096
    1.0 0.651
    1.5 0.964
    下载: 导出CSV
  • Broili L. 1967. New knowledge on the geomorphology of the vajont slide slipe surface[J]. Felsmechanik und Ingenieurgeologie, 5(1):38-88.
    Feng Z, Yin Y P, Li B, et al. 2012. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 33(9):2704-2712. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201209027.htm
    Fleming R W, Ellen S D, Algus M A. 1989. Transformation of dilative and contractive landslide debris into debris flows-an example from Marin County, California[J]. Engineering Geology, 27(1-4):201-223. doi: 10.1016/0013-7952(89)90034-3
    Gao Y, Li B, Wang G Z. 2016. Motion feature and numerical simulation analysis of Jiweishan landslide with rapid and long run-out[J]. Journal of Engineering Geology, 24(3):425-434. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201603013.htm
    Lan H X, Chen J H, Wu Y M. 2018. Spatial characterization of micro-and nanoscale micro-cracks in gas shale before and after triaxial compression test[J]. Journal of Engineering Geology, 26(1):24-35. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201801004
    Lan Z Y, Zhao J J, Zhai C, et al. 2014. Failure mechanism of slopes with soft base from numerical simulation[J]. Journal of Engineering Geology, 22(3):421-427. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201403013.htm
    Müller L. 1964. The rock slide in the Vajont Valley[J]. Rock Mechanics and Engineering Geology, 2(3-4):148-212.
    Müller L. 1968. New considerations on the Vaiont slide[J]. Rock Mechanics and Engineering Geology, 6(1-2):1-91. https://trid.trb.org/view.aspx?id=127263
    Müller L. 1987. The vajont catastrophe-a personal review[J]. Engineering Geology, 24(1-4):423-444. https://www.sciencedirect.com/science/article/pii/0013795287900780
    Li S D, Li X, Zhang N X, et al. 2006. Water-rock interaction of clay gouged intercalation sludging process of baota landslides in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 27(10):1841-1846. http://d.wanfangdata.com.cn/Periodical/ytlx200610041
    Li X, Li S D, Chen J, et al. 2008. Coupling effect mechanism of endogenic and exogenic geological processes of geological hazards evolution[J]. Chinese Journal of Rock Mechanics and Engineering, 27(9):1792-1806. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200809008.htm
    Liao Q L, Li X, Li S D, et al. 2005. Occurrence, geology and geomorphy characteristics and origin of Qianjiangping landslide in three gorges reservoir area and study on ancient landslide criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 24(17):3146-3153. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200517023
    Shuzui H. 2001. Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks, Japan[J]. Engineering Geology, 61(4):199-219. doi: 10.1016/S0013-7952(01)00025-4
    Sun J. 1999. Rheological properties of geomaterials and its application to engineering[M]. Beijing:China Architecture and Building Press.
    Sun J. 2007. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 26(6):1081-1106. https://www.researchgate.net/publication/281563287_Rock_rheological_mechanics_and_its_advance_in_engineering_applications
    Tan T K, Li K R. 1981. Relaxation and creep properties of thin interbedded clayey seams and their fundamental role in the stability of dams[C]//Proceeding of ISRM International Symposium. Tokyo, Japan: ISRM: 369-374. https://www.onepetro.org/conference-paper/ISRM-IS-1981-059
    Voight B, Faust C. 1982. Frictional heat and strength loss in same rapid slides[J]. Géotechnique, 32(1):43-54. doi: 10.1680/geot.1982.32.1.43
    Wang B J, Wang T, Sun J Z, et al. 2017. Shearing characteristic of sliding zone soil from ring shear tests for large scale mudstone landslides in Huangshui river basin[J]. Journal of Engineering Geology, 25(1):123-131. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201701017.htm
    Wang H J, Liu D A, Huang Z Q, et al. 2017. Mechanical properties and brittleness evaluation of layered shale rock[J]. Journal of Engineering Geology, 25(6):1414-1423. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201706004
    Wang S J. 1990. Engineering geomechanics of rock mass in dam foundations[M]. Beijing:Science Press.
    Xu D P, Feng X T, Cui Y J, et al. 2012. On failure mode and shear behavior of rock mass with Interlayer staggered zone[J]. Rock and Soil Mechanics, 33(1):129-136. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201201021.htm
    Xu Q, Fan X M, Huang R Q, et al. 2010. A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009:background, characterization, and causes[J]. Landslides, 7(1):75-81. doi: 10.1007/s10346-009-0179-y
    Xu R C, Zhou J J. 2010. Red stratum and dam[M]. Beijing:China University of Georsciences Press.
    Yin Y P. 2004. Major geologic harzards and the prevention on relocation sites of the Three Gorges Reservoir, the Yangtze River[M]. Beijing:Geological Publishing House.
    Yin Y P. 2010. Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 19(2):217-226. http://d.wanfangdata.com.cn/Periodical/yslxygcxb201002001
    冯振, 殷跃平, 李滨, 等. 2012.重庆武隆鸡尾山滑坡视向滑动机制分析[J].岩土力学, 33(9):2704-2712. http://d.old.wanfangdata.com.cn/Periodical/ytlx201209023
    高杨, 李滨, 王国章. 2016.鸡尾山高速远程滑坡运动特征及数值模拟分析[J].工程地质学报, 24(3):425-434. http://www.gcdz.org/CN/abstract/abstract11989.shtml
    兰恒星, 陈俊辉, 伍宇明. 2018.三轴压缩试验前后含气页岩微纳尺度裂隙空间分布特征研究[J].工程地质学报, 26(1):24-35. http://www.gcdz.org/CN/abstract/abstract12630.shtml
    兰志勇, 赵建军, 翟崇, 等. 2014.软弱基座型斜坡变形破坏机制模拟研究[J].工程地质学报, 22(3):421-427. http://www.gcdz.org/CN/abstract/abstract11435.shtml
    李守定, 李晓, 张年学, 等. 2006.三峡库区宝塔滑坡泥化夹层泥化过程的水岩作用[J].岩土力学, 27(10):1841-1846. doi: 10.3969/j.issn.1000-7598.2006.10.041
    李晓, 李守定, 陈剑, 等. 2008.地质灾害形成的内外动力耦合作用机制[J].岩石力学与工程学报, 27(9):1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006
    廖秋林, 李晓, 李守定, 等. 2005.三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J].岩石力学与工程学报, 24(17):3146-3153. doi: 10.3321/j.issn:1000-6915.2005.17.023
    孙钧. 1999.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社.
    孙钧. 2007.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报, 26(6):1081-1106. doi: 10.3321/j.issn:1000-6915.2007.06.001
    王玢佳, 王涛, 孙进忠, 等. 2017.基于环剪试验的湟水河流域大型泥岩滑坡滑带剪切特征初探[J].工程地质学报, 25(1):123-131. http://www.gcdz.org/CN/abstract/abstract12332.shtml
    王洪建, 刘大安, 黄志全, 等. 2017.层状页岩岩石力学特性及其脆性评价[J].工程地质学报, 25(6):1414-1423. http://www.gcdz.org/CN/abstract/abstract12601.shtml
    王思敬. 1990.坝基岩体工程地质力学分析[M].北京:科学出版社.
    徐鼎平, 冯夏庭, 崔玉军, 等. 2012.含层间错动带岩体的破坏模式及其剪切特性研究方法探讨[J].岩土力学, 33(1):129-136. doi: 10.3969/j.issn.1000-7598.2012.01.021
    徐瑞春, 周建军. 2010.红层与大坝[M].北京:中国地质大学出版社.
    殷跃平. 2004.长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社.
    殷跃平. 2010.斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报, 19 (2):217-226. http://d.wanfangdata.com.cn/Periodical/yslxygcxb201002001
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  3083
  • HTML全文浏览量:  513
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 修回日期:  2018-03-26
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回