PFC滑坡模拟二、三维建模方法研究

曹文 李维朝 唐斌 邓刚 李俊峰

曹文, 李维朝, 唐斌, 邓刚, 李俊峰. 2017: PFC滑坡模拟二、三维建模方法研究. 工程地质学报, 25(2): 455-462. doi: 10.13544/j.cnki.jeg.2017.02.024
引用本文: 曹文, 李维朝, 唐斌, 邓刚, 李俊峰. 2017: PFC滑坡模拟二、三维建模方法研究. 工程地质学报, 25(2): 455-462. doi: 10.13544/j.cnki.jeg.2017.02.024
CAO Wen, LI Weichao, TANG Bin, DENG Gang, LI Junfeng. 2017: PFC STUDY ON BUILDING OF 2D AND 3D LANDSLIDE MODELS. JOURNAL OF ENGINEERING GEOLOGY, 25(2): 455-462. doi: 10.13544/j.cnki.jeg.2017.02.024
Citation: CAO Wen, LI Weichao, TANG Bin, DENG Gang, LI Junfeng. 2017: PFC STUDY ON BUILDING OF 2D AND 3D LANDSLIDE MODELS. JOURNAL OF ENGINEERING GEOLOGY, 25(2): 455-462. doi: 10.13544/j.cnki.jeg.2017.02.024

PFC滑坡模拟二、三维建模方法研究

doi: 10.13544/j.cnki.jeg.2017.02.024
基金项目: 

自然科学基金 51309259,51379221

自然科学基金 51309259,51379221,41571012

973计划项目 2014CB047004

详细信息
    作者简介:

    曹文 (1992-), 男, 硕士生, 从事地质工程、岩土工程方面的科研工作.Email:cwencugb@163.com

  • 中图分类号: P642.22

PFC STUDY ON BUILDING OF 2D AND 3D LANDSLIDE MODELS

  • 摘要: 滑坡运动过程模拟避免了试验尺度与监测手段的限制,可以详细观察破坏过程,是定量评估滑坡灾变风险的重要研究手段。开展滑坡运动过程模拟的首要工作是建立滑坡模型。颗粒流程序(PFC) 虽然是滑坡运动过程模拟应用最广泛的程序之一,但在建立滑坡模型的前处理方面较弱,使得其在滑坡运动过程模拟中的推广应用受到限制。对此,本文指出了Ball-Ball和Ball-Wall两种建模方法的适用性、优缺点及滑体滑床边界确定方法,并以2014年地震触发的红石岩滑坡为例,以Brick填充法为基础,从获取地形数据、确定滑体和滑床区域、建立滑体和滑床几何模型、生成颗粒模型4个步骤出发,提出了基于数字等高线地形图建立PFC二、三维复杂滑坡模型的前处理方法,弥补了PFC软件前处理的不足,从而为今后基于PFC的滑坡运动过程模拟提供有益的帮助。
  • 图  1  PFC2D和PFC3D建模流程图

    Figure  1.  Modeling flow diagram of PFC2D and PFC3D

    图  2  红石岩滑坡前、后影像 (来自Google Earth)

    a.滑坡前影像 (2013年3月);b.滑坡后影像 (2015年5月)

    Figure  2.  Diagram before and after the sliding of Red Rock (from Google Earth)

    图  3  滑坡前、后等高线叠加图 (比例尺1 : 2000,等高距10m)(改自中国水电顾问集团昆明勘测设计研究院航测地形图)

    Figure  3.  Superposition of contour map before and after the sliding of the landslide (Scale: 1 : 2000, Counter interval: 10m)

    (Modified from Hydro China Kunming Engineering Corporation aerial topographic map)

    图  4  滑坡前、后A-A′剖面图

    Figure  4.  The A-A′ profiles before and after the landslide

    图  5  剖面处理结果图

    Figure  5.  Processing result of the profile

    图  6  Ball-Ball模型和Ball-Wall模型

    a. Ball-Ball模型;b. Ball-Wall模型

    Figure  6.  The Ball-Ball model and Ball-Wall model

    图  7  滑体顶部边界、滑床边界的三维表面模型

    Figure  7.  The 3D surface model of the top boundary of sliding mass and the sliding bed boundary

    图  8  滑体滑床边界的Geometry导入PFC3D

    Figure  8.  Sliding mass and sliding bed geometry imported into PFC3D

    图  9  PFC3D滑坡模型

    Figure  9.  Landslide model of PFC3D

    图  10  PFC3D模拟结果

    Figure  10.  Simulation result by PFC3D

    表  1  不同模型模拟结果

    Table  1.   Results of different modeling methods

    模型PFC
    (Ball-Ball)
    PFC
    (Ball-Wall)
    ROTOMAP+DAN
    滑体体积/m3377~495450450
    滑距/m389573597
    影响范围/m297.537127134.494
    最大速度/m·s-142921
    下载: 导出CSV
  • Cundall P A, Strack O D. 1979. A discrete numerical model for granular assemblies[J]. Géotechnique, 29(1):47~65. doi: 10.1680/geot.1979.29.1.47
    Cundall P A. 2014. PFC2D users'manual (version5.0)[S].Minnesota:Itasca consulting group Inc.
    Huang H F, Yi W, Zeng H E, et al. 2010. Rapid construction of 3D model of landslide using Google SketchUp[J]. Earth and Environment, 38(3):333~338. doi: 10.1201/b14917-84
    Hydro China Kunming Engineering Corporation. 2014. Feasibility study report of red rock lake regulation project[D]. Kunming:Hydro China Kunming Engineering Corporation.
    Li W C, Li H J, Dai F C, et al. 2012. Discrete element modeling of a rainfallinduced flowslide[J]. Engineering Geology, (149-150):22~34. https://www.researchgate.net/publication/256699810_Discrete_element_modeling_of_a_rainfall-induced_flowslide
    Lin C H, Lin M L. 2015. Evolution of the large landslide induced by Typhoon Morakot:A case study in the Butangbunasi River, southern Taiwan using the discreteelement method[J]. Engineering Geology, 197:172~187. doi: 10.1016/j.enggeo.2015.08.022
    Meng Y W, Chai H J. 2006. Application of particle flow code to simulation of movement of landslide[J]. Rock and Soil Mechanics, 27(2):348~352.
    Mo S J, Li Z L, Chen C J, et al.2012.3D terrain modeling based on Google Earth method and realization[J]. Bulletin of Surveying and Mapping, (2):39~42. https://www.researchgate.net/profile/Miro_Govedarica/publication/267797312_SITE_VIEW_RECONSTRUCTION_USING_3D_MODELING_TECHHIQUES/links/556f480708aeab7772285302.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    Pan W, Liu D A, Zhong H Y, et al.2004.3D geological modeling and ITS application to slope engineering[J]. Chinese Journal of Rock Mechanical and Engineering, 23(4):597~602. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200404012.htm
    Pirulli M, Preh A, Roth W, et al. 2003. Rock avalanche run out prediction:Combined application of two numerical methods[J]. Journal of the American Ceramic Society, 1(5):1495~1502.
    Qiao J P, Li F B, Zhao Y. 2001. Dynamical imitation of landslide digitization[J]. Journal of Soil and Water Conservation, 15(6):88~91. https://www.researchgate.net/profile/Emily_Brodsky2/publication/228413422_Landslide_Basal_Friction_as_Measured_by_Seismic_Waves/links/0c960525c20b5889a8000000.pdf
    Poisel R, Preh A. 2008.3D landslide run out modelling using the Particle Flow Code PFC3D[J]. Landsfides and Engineered Slopes, 873~879. doi: 10.1201/9780203885284-c110
    Shi C, Xu W Y. 2015. Particle flow numerical simulation techniques and practice[M]. Beijing:China Architecture & Building Press.
    Shi F G. 2014. The study of rapid and long-runout characteristics of Wenjiagou landslide based on PFC3D[D]. Beijing:College of Engineering & Technology China University of Geosciences (Beijing).
    Sun L, Suo J F, Liu D D, et al. 2014. Application of southern CASS with Google sketchUp in the construction of 3D virtual campus [J]. Mine Surveying, (5):28~31. http://en.cnki.com.cn/Article_en/CJFDTotal-KJSJ201501305.htm
    Wang Z H. 2005. Progress and application for digital landslide[J]. Geoscience, 19(2): 157~164. https://www.fig.net/resources/proceedings/fig_proceedings/fig2006/papers/ts16/ts16_05_woo_0367.pdf
    Wu F Y, Fan Y Y, Liang L, et al. 2013. Simulation of landslide process[J]. Journal of Guangxi University (Nature Science Edition), 38(6):1300~1305.
    Zhang L, Tang H M, Xiong C R, et al. 2012. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J]. Chinese Journal of Rock Mechanical and Engineering, 31(1):2601~2611. https://www.researchgate.net/publication/285764786_Movement_process_simulation_of_high-speed_long-distance_Jiweishan_landslide_with_PFC_3D
    黄海峰, 易武, 曾怀恩, 等. 2010.利用Google Sketchup快速构建滑坡三维模型[J].地球与环境, 38(3):333~338. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201003012.htm
    孟云伟, 柴贺军. 2006.颗粒流离散元在滑坡运动过程模拟中的应用[J].岩土力学, 27(增2):348~352. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSL200611001156.htm
    莫善军, 李志凛, 陈成江, 等. 2012.利用Google Earth建立等高线三维地形模型[J].测绘通报, (2):39~42. http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201202015.htm
    潘炜, 刘大安, 钟辉亚, 等. 2004.三维地质建模以及在边坡工程中的应用[J].岩石力学与工程学报, 23(4):597~602. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404012.htm
    乔建平, 李发斌, 赵宇. 2001.滑坡数字化动态仿真模拟[J].水土保持学报, 15(6):88~91. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS2001S2023.htm
    施凤根. 2014. 基于PFC3D的文家沟滑坡高速远程运动学特征研究[D]. 北京: 中国地质大学 (北京) 工程技术学院.
    石崇, 徐卫亚. 2015.颗粒流数值模拟技巧与实践[M].北京:中国建筑工业出版社.
    孙磊, 索俊锋, 刘冬冬, 等. 2014.南方CASS结合Google Sketchup在构建三维虚拟矿山测量校园中的应用[J].矿山测量, (5):28~31. http://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201405009.htm
    王治华. 2005.数字滑坡技术及其应用[J].现代地质, 19(2):157~164. http://cdmd.cnki.com.cn/Article/CDMD-10407-1011169386.htm
    吴凤元, 樊赟赟, 梁力, 等. 2013.滑坡运动过程模拟分析[J].广西大学学报 (自然科学版), 38(6):1300~1305. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201306006.htm
    张龙, 唐辉明, 熊承仁, 等. 2012.鸡尾山高速远程滑坡运动过程PFC3D模拟[J].岩石力学与工程学报, 31(增1):2601~2611. http://cdmd.cnki.com.cn/Article/CDMD-10491-1012446567.htm
    中国水电顾问集团昆明勘测设计研究院. 2014. 红石岩堰塞湖整治工程可行性研究报告[D]. 昆明: 中国水电顾问集团昆明勘测设计研究院.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  4442
  • HTML全文浏览量:  1315
  • PDF下载量:  541
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-10
  • 修回日期:  2016-06-28
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回