A PRELIMINARY STUDY ON SPATIAL DISTRIBUTION PATTERNS OF LANDSLIDES TRIGGERED BY JIUZHAIGOU EARTHQUAKE IN SICHUAN ON AUGUST 8TH, 2017 AND THEIR SUSCEPTIBILITY ASSESSMENT
-
摘要: 2017年8月8日四川省九寨沟发生7.0级地震,是继2008年汶川大地震和2013年芦山地震之后,四川省发生的又一次7.0级以上的强震。为了给现场救援和震后地质灾害防治提供科学依据,本文作者第一时间赶赴现场,并基于震前和震后高精度遥感影像,完成了震区地质灾害解译和复核工作,共解译地质灾害1883处,主要以中小型浅层滑坡和崩塌为主。基于解译结果,对同震灾害的空间分布规律和控制因素(距断层距离、地面峰值加速度PGA、高程、坡度和坡向等)进行了分析,研究表明地质灾害主要沿北西-南东向呈带状分布,且沿公路、沟谷较为发育,在野外推测发震断层2km范围内高度集中,呈现明显的断层效应,但与塔藏断层之间的空间相关性相对较弱。在上述分析的基础上,采用逻辑回归模型,利用地震、地形和地质3大因素(8个因子)对地质灾害易发性进行了快速评价和分区,经统计校验证明该模型的准确率达0.851,模型精度较高。Abstract: A magnitude 7.0 earthquake struck Jiuzhaigou on August 8th, 2017 in Sichuan province, which is another strong earthquake happened in Sichuan province after the 2008 great Wenchuan earthquake and the 2013 Lushan earthquake. In order to provide scientific evidence for on-the-spot rescue work and geologic hazard prevention after the earthquake, the author arrived quickly on the field and finished geologic hazard interpretation and review work in the earth-stricken areas based on high resolution remote sensing images before and after the earthquake. As a result, 1833 earthquake-induced geohazards have been obtained in the study area of 840km2, which are mainly medium-scale and small-scale shallow landslides and collapses. In terms of the results of the interpretation, the spatial distribution patterns and control factors in the cosesmic geohazards (distance from the fault, PGA, elevation, slope, aspect etc.) are analyzed, the research shows that the geohazards triggered by earthquake have the features of zonal distribution mainly distributed along north-west and east-south, especially along the roads and valleys. The width of strong development zone along the field inferred seismogenic fault is about 2km, showing a distinct faulting effect, but the spatial correlation betweem geohazards and Tazang fault is weak. Based on the above-described analysis, logistic regression model is taken quick comments and divisions of geologic hazard susceptibility are made. After statists and testing, the accuracy of this model has reached 0.851, a comparatively high precise data.
-
表 1 遥感影像及其它地理信息数据
Table 1. Remote sensing images and other geographical information data
数据类型 获取时间 数据源 分辨率/m 20151021 SPOT5 2.5 20151207 SPOT5 2.5 影像数据 20170811 无人机航拍影像 0.2 20170809 高分2号 1 20170816 高分1号 1 地形数据(DEM) 震前 四川省测绘局 5 地质图 震前 四川省地质局 1:20万 地震数据 20170809 中国地震台网中心 — 表 2 地质灾害空间分布规律研究因子选取
Table 2. Selection of impact factors of geological hazards spatial distribution research
因子名称 选取依据与意义 获取方法 地震(诱发)因素 距可能发震断层距离 本次地震发震断层不明显,目前仍存在争议,因此本文对所有可能的发震断层进行分析,从地质灾害空间分布的角度为发震断层的确定提供依据(图 7a) 野外调查断层位置与国家活断层研究中心提供断层信息(矢量文件);通过GIS的空间缓冲(buffer)功能,进行距离分析 地面峰值加速度(PGA) PGA,地面峰值加速度,是反映地震时地表震动强度的重要参数,部分强震的PGA可达到1g以上,本次地震的观测值为0. 08g~0. 26g,震中附近值较高,随着距震中距离增加,逐渐衰减(图 7b) 美国地质调查局(USGS)公布数据(矢量文件),通过GIS转换成5m×5m的栅格数据 地形因素 高程 研究区高程为149~4580m(图 7c),以200m为间距将其划分为12级 高程信息来自测绘局震前数字高程模型(DEM),分辨率为5m。地形因子均可通过GIS的3D Analyst功能,自动从DEM获取 坡度 研究区内坡度起伏较大,最大坡度达84. 5°,平均坡度32°(图 7d) 坡向 坡向共分为平坦、N、NE、E、SE、S、SW、W、NW 9级(图 7e) 地质因素 地层岩性 研究区内地层岩性按照地层年代岩组共分为1类(图 1 :第三系(N2)、三叠系(T1、T2、T3)、二叠系(P1、P2)、石炭系(C1、C2、C3)、泥盆系(D3) 四川省地质局1:20万地质图 表 3 各评价因子分级与标准化值
Table 3. Classification and normalization of evaluation factors
影响因子 因子分级 Sij Zij 指标值 标准化值 坡度/(。) < 10 0.0405 0.0028 0.0700 0.0045 10~20 0.0996 0.0078 0.0781 0.0050 2 0 ~30 0.1845 0.0234 0.1266 0.0081 30 ~40 0.3753 0.1984 0.5285 0.0339 40 ~50 0.2297 0.469 1.9458 0.1247 50 ~60 0.0586 0.2611 4.4578 0.2857 60 ~7 0 0.0109 0.0566 5.2046 0.3335 > 70 0.0010 0.0031 3.1924 0.2046 坡向 平坦 0.0665 0.0557 0.8363 0.0951 北 0.1432 0.1701 1.1881 0.1351 东北 0.1471 0.2587 1.7581 0.1999 东 0.1069 0.1687 1.5772 0.1793 东南 0.1065 0.1229 1.1534 0.1312 南 0.1299 0.0630 0.4851 0.0552 西南 0.1423 0.0656 0.4606 0.0524 西 0.1059 0.0518 0.4890 0.0556 西北 0.0516 0.0437 0.8465 0.0963 高程/m < 2000 0.0028 0.0001 0.0335 0.0127 2000 ~2500 0.1185 0.1027 0.8666 0.3280 2500 ~3500 0.6141 0.8324 1.3555 0.5131 3500 ~4000 0.2212 0.0598 0.2704 0.1024 > 4000 0.0434 0.0050 0.1157 0.0438 曲率 < -0.5 0.4318 0.4426 1.0249 0.3279 -0.5~5 0.1496 0.1791 1.1972 0.3830 > 0.5 0.4186 0.3784 0.9038 0.2891 岩性 三叠系岩组 0.4145 0.1333 0.3215 0.0804 二叠系岩组 0.1708 0.1321 0.7736 0.1935 第三系土坡组 0.0025 0.0016 0.6508 0.1628 石炭系岩组 0.3726 0.7204 1.9336 0.4837 泥盆系岩组 0.0396 0.0126 0.3177 0.0795 PGA /g 0. 12 0.0630 0.0054 0.0859 0.0194 0. 16 0.2094 0.1332 0.6358 0.1436 0.20 0.3112 0.3771 1.2117 0.2736 0. 24 0.3284 0.3619 1.1018 0.2488 0.26 0.0879 0.1225 1.3936 0.3147 距断层距离/m 0~1000 0.4667 0.5390 1.1549 0.3968 1000 ~2000 0.2575 0.3275 1.2719 0.4370 > 2000 0.2758 0.1335 0.4840 0.1663 距水系距离/m 0~300 0.1697 0.1395 0.8221 0.2395 300-600 0.1500 0.2588 1.7258 0.5028 > 600 0.6803 0.6017 0.8844 0.2577 表 4 易发性评价模型各因子回归系数与权重系数
Table 4. Logistic regression coefficient and weight coefficient
因子类别 坡度 坡向 高程 曲率 PGA 岩性 距断层距离 距水系距离 回归系数 9.356 7.984 3.569 -0.993 1.499 3.354 2.596 1.963 权重系数 0.2990 0.2552 0.1141 0.0317 0.0479 0.1072 0.0830 0.0619 表 5 基于逻辑回归模型的研究区灾害易发性分区面积及其百分比
Table 5. Area and percentage of landslides susceptibility zoning based on the logistic regression model
易发区分类 各分区面积/km2 各分区面积占研究区面积百分比/% 75 %测试样本各分区灾害面积占总灾害面积百分比/% 25%检验样本各分区灾害面积占总灾害面积百比/% 较高易发区 19.35 4.49 42.91 44.48 高易发区 48.43 11.24 28.58 30.94 中易发区 110.27 25.59 20.81 17.59 低易发区 208.75 48.45 6.07 5.57 较低易发区 44.06 10.23 1.58 1.19 -
Chang M, Tang C, Xia C H, et al. 2016. Spatial distribution analysis of landslide triggered by the 2013-04-20 Lushan earthquake, China[J]. Earthquake Engineering and Engineering Vibration, 15(1):163~171. doi: 10.1007/s11803-016-0313-5 Chen X L, Yu L, Wang M M, et al. 2014. Brief Communication:Landslides triggered by the MS=7.0 Lushan earthquake, China[J]. Nature Hazards and Earth System Sciences, 1(4):3891~3918. doi: 10.5194/nhess-14-1257-2014 Chigira M, Yagi H. 2006. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 82(4):202~221. doi: 10.1016/j.enggeo.2005.10.006 Cruden D M, Varnes D J. 1996. Landslide types and processes//Turner A K, Schuster R L. Landslides. Investigation and Mitigation. Transportation Research Board Special Report 247[M]. Washington DC:National Academy Press:36~75. Dai F C, Xu C, Yao X, et al. 2011. Spatial distribution of landslides triggered by the 2008 MS8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 40(4):883~895. doi: 10.1016/j.jseaes.2010.04.010 Fan X, Xu Q, Westen C J V, et al. 2017. Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake[J]. Geoenvironmental Disasters, 4(1):12. doi: 10.1186/s40677-017-0079-8 Gorum T, Fan X, Westen C J V, et al. 2011. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 133(3):152~167. http://www.sciencedirect.com/science/article/pii/S0169555X11002649 Hang R Q, Li W L. 2009. Fault effect analysis of Geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1):19~28. http://www.gcdz.org/EN/abstract/abstract8399.shtml Huang R, Fan X. 2013. The landslide story[J]. Nature Geoscience, 6(5), 325~326. doi: 10.1038/ngeo1806 Huang R, Pei X, Fan X, et al. 2012. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China[J]. Landslides, 9(1):131~ 142. doi: 10.1007/s10346-011-0276-6 Huang R Q, Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12):2585~2592. http://en.cnki.com.cn/article_en/cjfdtotal-yslx200812032.htm Kargel J S, Leonard G J, Shugar D H, et al. 2016. Geomorphic and geologic controls of geohazards induced by Nepals 2015 Gorkha earthquake[J]. Science, 351(6269). http://www.ncbi.nlm.nih.gov/pubmed/26676355 Keefer D K. 1984. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 95(4):406~421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2 Keefer D K. 2010. Earthquake-induced landslides from horseback surveys through GIS analyses (Sergey Soloviev Medal Lecture)[J]. Egu General Assembly, 12:14677. http://adsabs.harvard.edu/abs/2010eguga..1214677k Keefer D K. 2000. Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California event[J]. Engineering Geology, 58(3):231~249. http://www.sciencedirect.com/science/article/pii/S0013795200000375 Larsen I J, Montgomery D R, Korup O. 2010. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 3(4):247~251. doi: 10.1038/ngeo776 Li Y H, Huang C, Yi S J, et al. 2017. Study on seismic fault and source rupture tectonic dynamic mechanism of Jiuzhaigou MS7.0 earthquake[J]. Journal of Engineering Geology, 25 (4):1141~ 1150. Malamud B D, Turcotte D L, Guzzetti F, et al. 2004. Landslide inventories and their statistical properties[J]. Earth Surface Processes and Landforms, 29(6):687~711. doi: 10.1002/(ISSN)1096-9837 Sato H P, Hasegawa H, Fujiwara S, et al. 2007. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery[J]. Landslides, 4(2):113~122. doi: 10.1007/s10346-006-0069-5 Soeters R, Westen C V. 1996. Slope instability recognition, analysis and zonation// Turner A K, Schuster R. Landslides Investigation and Mitigation. Transportation Research Board Special Report[M]. Washington DC:National Academy Press:247. Tang C, Ma G C. 2015. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 35(1):91~98. http://en.cnki.com.cn/Article_en/CJFDTotal-DLKX201501011.htm Tian C S, Liu X L, Wang J. 2016. Geohazard susceptibility assessment based on CF model and logistic regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 43(6):154~170. Westen C V, Gorum T. 2010. Preliminary results on earthquake triggered landslides for the Haiti earthquake(January 2010)[J]. Egu General Assembly Conference, 11153. http://adsabs.harvard.edu/abs/2010EGUGA..1211153V Xu C, Xu X W, Wu X Y, et al. 2013a. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 21(1):25~44. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201301005.htm Xu C, Xu X W, Zheng W J. 2013b. Compiling inventory of landslides triggered by Minxian-Zhangxian earthquake of July 22, 2013 and their spatial distribution analysis[J]. Journal of Engineering Geology, 21(5):736~749. Xu C, Xu X W.2013c. Response rate of seismic slope mass movements related to 2008 Wenchuan earthquake and its spatial distribution analysys[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2):3888~3908. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2013S2113.htm Xu Q, Li W L.2010a. Study on the direction effects of landslides triggered by Wenchuan earthquake[J]. Journal of Sichuan University(Engineering Science Edition), 42(S1):7~14. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH2010S1003.htm Xu Q, Li W L. 2010b. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6):818~826. http://www.gcdz.org/EN/abstract/abstract8731.shtml Zou Q, Wang Q, Liu Y G. 2014. Evaluation method of debris-flow susceptibility using GIS and logistic model[J]. Bulletin of Soil and Water Conservation, 34(3):185~189. http://en.cnki.com.cn/Article_en/CJFDTotal-STTB201403036.htm 黄润秋, 李为乐. 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028 黄润秋, 李为乐. 2009.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报, 17(1):19~28. http://www.gcdz.org/CN/abstract/abstract8399.shtml 李渝生, 黄超, 易树健等. 2017.九寨沟7.0级地震的地震断裂及震源破裂的构造动力学机理研究[J].工程地质学报, 25 (4):1141~1150. http://www.gcdz.org/CN/abstract/abstract12453.shtml 唐川, 马国超. 2015.基于地貌单元的小区域地质灾害易发性分区方法研究[J].地理科学, 35(1):91~98. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201501011.htm 田春山, 刘希林, 汪佳. 2016.基于CF和Logistic回归模型的广东省地质灾害易发性评价[J].水文地质工程地质, 43 (6):154~ 170. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm 许冲, 徐锡伟, 吴熙彦, 等.2013a.2008年汶川地震滑坡详细编目及其空间分布规律分析[J].工程地质学报, 21(1):25~44. http://www.gcdz.org/CN/abstract/abstract11246.shtml 许冲, 徐锡伟, 郑文俊.2013b.2013年7月22日岷县漳县MS6.6级地震滑坡编录与空间分布规律分析[J].工程地质学报, 21(5):736~749. http://www.gcdz.org/CN/abstract/abstract11342.shtml 许冲, 徐锡伟.2013c.2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J].岩石力学与工程学报, 32 (S2):3888~ 3908. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2113.htm 许强, 李为乐.2010a.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版), 42(S1):7~14. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1003.htm 许强, 李为乐.2010b.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报, 18(6):818~826. http://www.gcdz.org/CN/abstract/abstract8731.shtml 邹强, 王青, 刘延国. 2014.基于GIS与Logistic模型的公路泥石流易发性分析[J].水土保持通报, 34(3):185~189. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB201403036.htm -