2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究

戴岚欣 许强 范宣梅 常鸣 杨琴 杨帆 任敬

戴岚欣, 许强, 范宣梅, 常鸣, 杨琴, 杨帆, 任敬. 2017: 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究. 工程地质学报, 25(4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030
引用本文: 戴岚欣, 许强, 范宣梅, 常鸣, 杨琴, 杨帆, 任敬. 2017: 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究. 工程地质学报, 25(4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030
DAI Lanxin, XU Qiang, FAN Xuanmei, CHANG Ming, YANG Qin, YANG Fan, REN Jing. 2017: A PRELIMINARY STUDY ON SPATIAL DISTRIBUTION PATTERNS OF LANDSLIDES TRIGGERED BY JIUZHAIGOU EARTHQUAKE IN SICHUAN ON AUGUST 8TH, 2017 AND THEIR SUSCEPTIBILITY ASSESSMENT. JOURNAL OF ENGINEERING GEOLOGY, 25(4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030
Citation: DAI Lanxin, XU Qiang, FAN Xuanmei, CHANG Ming, YANG Qin, YANG Fan, REN Jing. 2017: A PRELIMINARY STUDY ON SPATIAL DISTRIBUTION PATTERNS OF LANDSLIDES TRIGGERED BY JIUZHAIGOU EARTHQUAKE IN SICHUAN ON AUGUST 8TH, 2017 AND THEIR SUSCEPTIBILITY ASSESSMENT. JOURNAL OF ENGINEERING GEOLOGY, 25(4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030

2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究

doi: 10.13544/j.cnki.jeg.2017.04.030
基金项目: 

国家自然科学基本组织间合作研究-NSFC-RCUK_NERC项目(中英

汶川地震诱发地质灾害时空演化规律及风险评价研究 41661134010

国家创新研究群体科学基金 41521002

霍英东青年教师基金 151018

详细信息
    作者简介:

    戴岚欣(1993-), 男, 硕士生, 土木工程专业.Email:1641965108@qq.com

    通讯作者:

    许强(1968-), 男, 博士, 教授, 博士生导师, 主要从事地质灾害评价预测与防治处理研究.Email:xq@cdut.edu.cn

  • 中图分类号: P642

A PRELIMINARY STUDY ON SPATIAL DISTRIBUTION PATTERNS OF LANDSLIDES TRIGGERED BY JIUZHAIGOU EARTHQUAKE IN SICHUAN ON AUGUST 8TH, 2017 AND THEIR SUSCEPTIBILITY ASSESSMENT

  • 摘要: 2017年8月8日四川省九寨沟发生7.0级地震,是继2008年汶川大地震和2013年芦山地震之后,四川省发生的又一次7.0级以上的强震。为了给现场救援和震后地质灾害防治提供科学依据,本文作者第一时间赶赴现场,并基于震前和震后高精度遥感影像,完成了震区地质灾害解译和复核工作,共解译地质灾害1883处,主要以中小型浅层滑坡和崩塌为主。基于解译结果,对同震灾害的空间分布规律和控制因素(距断层距离、地面峰值加速度PGA、高程、坡度和坡向等)进行了分析,研究表明地质灾害主要沿北西-南东向呈带状分布,且沿公路、沟谷较为发育,在野外推测发震断层2km范围内高度集中,呈现明显的断层效应,但与塔藏断层之间的空间相关性相对较弱。在上述分析的基础上,采用逻辑回归模型,利用地震、地形和地质3大因素(8个因子)对地质灾害易发性进行了快速评价和分区,经统计校验证明该模型的准确率达0.851,模型精度较高。
  • 图  1  九寨沟地震震中区域地震地质构造与研究区位置图

    Figure  1.  Geological structure and location of study area of Jiuzhaigou earthquake epicentral area

    图  2  遥感影像分布图

    Figure  2.  Pre-earthquake and post-earthquake remote sensing imagery coverage map

    图  3  基于震前和震后高精度遥感影像的同震灾害解译实例

    A.大型滑坡, B.崩塌, C和D.震前已有滑坡复活, E.震后熊猫海周围地质灾害解译; abcde为震前

    Figure  3.  Examples of coseismic landslide interpretation based on high resolution pre-earthquake and post-earthquake images

    图  4  九寨沟地震诱发地质灾害分布图

    Figure  4.  Inventory map of landslide triggered by the Jiuzhaigou earthquake

    图  5  野外地质灾害详查照片

    Figure  5.  The field investigation photos

    图  6  汶川地震、芦山地震和九寨沟地震诱发滑坡面积-概率密度图

    Figure  6.  The size-frequency distribution of landslides triggered by the Wenchuan earthquake, Lushan earthquake and the Jiuzhaigou earthquake

    图  7  地质灾害空间分布规律研究所选因子栅格图

    a.距可能发震断层距离;b.地面峰值加速度PGA;c.高程;d.坡度;e.坡向;f.地质灾害面密度图

    Figure  7.  Factor maps:a.distance to possible seismogenic fault, b.PGA, c.elevation, d.slope, e.aspect, f.coseismic landslide area density

    图  8  同震地质灾害与距可能发震断层距离的关系图

    Figure  8.  Relationship between co-seismic landslide and distance from possible seismogenic fault

    图  9  同震灾害面密度(a)与距现场调查发震断层关系(b)和距塔藏断层关系(c)对比图

    Figure  9.  The comparison chart of relationships between coseismic landslide areal density (a) with distance from field investigation of seismogenic fault (b) and distance from Tazang fault (c)

    图  10  同震地质灾害与PGA和地形因素的关系图

    Figure  10.  Relationships between co-seismic landslide with PGA and topographic factors (elevation, slope and aspect)

    图  11  同震地质灾害与地层岩性关系图

    Figure  11.  Relationship between co-seismic landslide and lithology

    图  12  九寨沟地震诱发地质灾害易发性评价分区图

    Figure  12.  Susceptibility zoning map of geological landslides induced by Jiuzhaigou earthquake

    图  13  九寨沟地震诱发灾害易发性评价ROC曲线

    Figure  13.  ROC curve of Jiuzhaigou earthquake induce landslides susceptibility assessment

    表  1  遥感影像及其它地理信息数据

    Table  1.   Remote sensing images and other geographical information data

    数据类型 获取时间 数据源 分辨率/m
    20151021 SPOT5 2.5
    20151207 SPOT5 2.5
    影像数据 20170811 无人机航拍影像 0.2
    20170809 高分2号 1
    20170816 高分1号 1
    地形数据(DEM) 震前 四川省测绘局 5
    地质图 震前 四川省地质局 1:20万
    地震数据 20170809 中国地震台网中心
    下载: 导出CSV

    表  2  地质灾害空间分布规律研究因子选取

    Table  2.   Selection of impact factors of geological hazards spatial distribution research

    因子名称 选取依据与意义 获取方法
    地震(诱发)因素
    距可能发震断层距离 本次地震发震断层不明显,目前仍存在争议,因此本文对所有可能的发震断层进行分析,从地质灾害空间分布的角度为发震断层的确定提供依据(图 7a) 野外调查断层位置与国家活断层研究中心提供断层信息(矢量文件);通过GIS的空间缓冲(buffer)功能,进行距离分析
    地面峰值加速度(PGA) PGA,地面峰值加速度,是反映地震时地表震动强度的重要参数,部分强震的PGA可达到1g以上,本次地震的观测值为0. 08g~0. 26g,震中附近值较高,随着距震中距离增加,逐渐衰减(图 7b) 美国地质调查局(USGS)公布数据(矢量文件),通过GIS转换成5m×5m的栅格数据
    地形因素
    高程 研究区高程为149~4580m(图 7c),以200m为间距将其划分为12级 高程信息来自测绘局震前数字高程模型(DEM),分辨率为5m。地形因子均可通过GIS的3D Analyst功能,自动从DEM获取
    坡度 研究区内坡度起伏较大,最大坡度达84. 5°,平均坡度32°(图 7d)
    坡向 坡向共分为平坦、N、NE、E、SE、S、SW、W、NW 9级(图 7e)
    地质因素
    地层岩性 研究区内地层岩性按照地层年代岩组共分为1类(图 1 :第三系(N2)、三叠系(T1、T2、T3)、二叠系(P1、P2)、石炭系(C1、C2、C3)、泥盆系(D3) 四川省地质局1:20万地质图
    下载: 导出CSV

    表  3  各评价因子分级与标准化值

    Table  3.   Classification and normalization of evaluation factors

    影响因子 因子分级 Sij Zij 指标值 标准化值
    坡度/(。) < 10 0.0405 0.0028 0.0700 0.0045
    10~20 0.0996 0.0078 0.0781 0.0050
    2 0 ~30 0.1845 0.0234 0.1266 0.0081
    30 ~40 0.3753 0.1984 0.5285 0.0339
    40 ~50 0.2297 0.469 1.9458 0.1247
    50 ~60 0.0586 0.2611 4.4578 0.2857
    60 ~7 0 0.0109 0.0566 5.2046 0.3335
    > 70 0.0010 0.0031 3.1924 0.2046
    坡向 平坦 0.0665 0.0557 0.8363 0.0951
    0.1432 0.1701 1.1881 0.1351
    东北 0.1471 0.2587 1.7581 0.1999
    0.1069 0.1687 1.5772 0.1793
    东南 0.1065 0.1229 1.1534 0.1312
    0.1299 0.0630 0.4851 0.0552
    西南 0.1423 0.0656 0.4606 0.0524
    西 0.1059 0.0518 0.4890 0.0556
    西北 0.0516 0.0437 0.8465 0.0963
    高程/m < 2000 0.0028 0.0001 0.0335 0.0127
    2000 ~2500 0.1185 0.1027 0.8666 0.3280
    2500 ~3500 0.6141 0.8324 1.3555 0.5131
    3500 ~4000 0.2212 0.0598 0.2704 0.1024
    > 4000 0.0434 0.0050 0.1157 0.0438
    曲率 < -0.5 0.4318 0.4426 1.0249 0.3279
    -0.5~5 0.1496 0.1791 1.1972 0.3830
    > 0.5 0.4186 0.3784 0.9038 0.2891
    岩性 三叠系岩组 0.4145 0.1333 0.3215 0.0804
    二叠系岩组 0.1708 0.1321 0.7736 0.1935
    第三系土坡组 0.0025 0.0016 0.6508 0.1628
    石炭系岩组 0.3726 0.7204 1.9336 0.4837
    泥盆系岩组 0.0396 0.0126 0.3177 0.0795
    PGA /g 0. 12 0.0630 0.0054 0.0859 0.0194
    0. 16 0.2094 0.1332 0.6358 0.1436
    0.20 0.3112 0.3771 1.2117 0.2736
    0. 24 0.3284 0.3619 1.1018 0.2488
    0.26 0.0879 0.1225 1.3936 0.3147
    距断层距离/m 0~1000 0.4667 0.5390 1.1549 0.3968
    1000 ~2000 0.2575 0.3275 1.2719 0.4370
    > 2000 0.2758 0.1335 0.4840 0.1663
    距水系距离/m 0~300 0.1697 0.1395 0.8221 0.2395
    300-600 0.1500 0.2588 1.7258 0.5028
    > 600 0.6803 0.6017 0.8844 0.2577
    下载: 导出CSV

    表  4  易发性评价模型各因子回归系数与权重系数

    Table  4.   Logistic regression coefficient and weight coefficient

    因子类别 坡度 坡向 高程 曲率 PGA 岩性 距断层距离 距水系距离
    回归系数 9.356 7.984 3.569 -0.993 1.499 3.354 2.596 1.963
    权重系数 0.2990 0.2552 0.1141 0.0317 0.0479 0.1072 0.0830 0.0619
    下载: 导出CSV

    表  5  基于逻辑回归模型的研究区灾害易发性分区面积及其百分比

    Table  5.   Area and percentage of landslides susceptibility zoning based on the logistic regression model

    易发区分类 各分区面积/km2 各分区面积占研究区面积百分比/% 75 %测试样本各分区灾害面积占总灾害面积百分比/% 25%检验样本各分区灾害面积占总灾害面积百比/%
    较高易发区 19.35 4.49 42.91 44.48
    高易发区 48.43 11.24 28.58 30.94
    中易发区 110.27 25.59 20.81 17.59
    低易发区 208.75 48.45 6.07 5.57
    较低易发区 44.06 10.23 1.58 1.19
    下载: 导出CSV
  • Chang M, Tang C, Xia C H, et al. 2016. Spatial distribution analysis of landslide triggered by the 2013-04-20 Lushan earthquake, China[J]. Earthquake Engineering and Engineering Vibration, 15(1):163~171. doi: 10.1007/s11803-016-0313-5
    Chen X L, Yu L, Wang M M, et al. 2014. Brief Communication:Landslides triggered by the MS=7.0 Lushan earthquake, China[J]. Nature Hazards and Earth System Sciences, 1(4):3891~3918. doi: 10.5194/nhess-14-1257-2014
    Chigira M, Yagi H. 2006. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 82(4):202~221. doi: 10.1016/j.enggeo.2005.10.006
    Cruden D M, Varnes D J. 1996. Landslide types and processes//Turner A K, Schuster R L. Landslides. Investigation and Mitigation. Transportation Research Board Special Report 247[M]. Washington DC:National Academy Press:36~75.
    Dai F C, Xu C, Yao X, et al. 2011. Spatial distribution of landslides triggered by the 2008 MS8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 40(4):883~895. doi: 10.1016/j.jseaes.2010.04.010
    Fan X, Xu Q, Westen C J V, et al. 2017. Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake[J]. Geoenvironmental Disasters, 4(1):12. doi: 10.1186/s40677-017-0079-8
    Gorum T, Fan X, Westen C J V, et al. 2011. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 133(3):152~167. http://www.sciencedirect.com/science/article/pii/S0169555X11002649
    Hang R Q, Li W L. 2009. Fault effect analysis of Geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1):19~28. http://www.gcdz.org/EN/abstract/abstract8399.shtml
    Huang R, Fan X. 2013. The landslide story[J]. Nature Geoscience, 6(5), 325~326. doi: 10.1038/ngeo1806
    Huang R, Pei X, Fan X, et al. 2012. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China[J]. Landslides, 9(1):131~ 142. doi: 10.1007/s10346-011-0276-6
    Huang R Q, Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12):2585~2592. http://en.cnki.com.cn/article_en/cjfdtotal-yslx200812032.htm
    Kargel J S, Leonard G J, Shugar D H, et al. 2016. Geomorphic and geologic controls of geohazards induced by Nepals 2015 Gorkha earthquake[J]. Science, 351(6269). http://www.ncbi.nlm.nih.gov/pubmed/26676355
    Keefer D K. 1984. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 95(4):406~421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
    Keefer D K. 2010. Earthquake-induced landslides from horseback surveys through GIS analyses (Sergey Soloviev Medal Lecture)[J]. Egu General Assembly, 12:14677. http://adsabs.harvard.edu/abs/2010eguga..1214677k
    Keefer D K. 2000. Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California event[J]. Engineering Geology, 58(3):231~249. http://www.sciencedirect.com/science/article/pii/S0013795200000375
    Larsen I J, Montgomery D R, Korup O. 2010. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 3(4):247~251. doi: 10.1038/ngeo776
    Li Y H, Huang C, Yi S J, et al. 2017. Study on seismic fault and source rupture tectonic dynamic mechanism of Jiuzhaigou MS7.0 earthquake[J]. Journal of Engineering Geology, 25 (4):1141~ 1150.
    Malamud B D, Turcotte D L, Guzzetti F, et al. 2004. Landslide inventories and their statistical properties[J]. Earth Surface Processes and Landforms, 29(6):687~711. doi: 10.1002/(ISSN)1096-9837
    Sato H P, Hasegawa H, Fujiwara S, et al. 2007. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery[J]. Landslides, 4(2):113~122. doi: 10.1007/s10346-006-0069-5
    Soeters R, Westen C V. 1996. Slope instability recognition, analysis and zonation// Turner A K, Schuster R. Landslides Investigation and Mitigation. Transportation Research Board Special Report[M]. Washington DC:National Academy Press:247.
    Tang C, Ma G C. 2015. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 35(1):91~98. http://en.cnki.com.cn/Article_en/CJFDTotal-DLKX201501011.htm
    Tian C S, Liu X L, Wang J. 2016. Geohazard susceptibility assessment based on CF model and logistic regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 43(6):154~170.
    Westen C V, Gorum T. 2010. Preliminary results on earthquake triggered landslides for the Haiti earthquake(January 2010)[J]. Egu General Assembly Conference, 11153. http://adsabs.harvard.edu/abs/2010EGUGA..1211153V
    Xu C, Xu X W, Wu X Y, et al. 2013a. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 21(1):25~44. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201301005.htm
    Xu C, Xu X W, Zheng W J. 2013b. Compiling inventory of landslides triggered by Minxian-Zhangxian earthquake of July 22, 2013 and their spatial distribution analysis[J]. Journal of Engineering Geology, 21(5):736~749.
    Xu C, Xu X W.2013c. Response rate of seismic slope mass movements related to 2008 Wenchuan earthquake and its spatial distribution analysys[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2):3888~3908. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2013S2113.htm
    Xu Q, Li W L.2010a. Study on the direction effects of landslides triggered by Wenchuan earthquake[J]. Journal of Sichuan University(Engineering Science Edition), 42(S1):7~14. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCLH2010S1003.htm
    Xu Q, Li W L. 2010b. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6):818~826. http://www.gcdz.org/EN/abstract/abstract8731.shtml
    Zou Q, Wang Q, Liu Y G. 2014. Evaluation method of debris-flow susceptibility using GIS and logistic model[J]. Bulletin of Soil and Water Conservation, 34(3):185~189. http://en.cnki.com.cn/Article_en/CJFDTotal-STTB201403036.htm
    黄润秋, 李为乐. 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
    黄润秋, 李为乐. 2009.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报, 17(1):19~28. http://www.gcdz.org/CN/abstract/abstract8399.shtml
    李渝生, 黄超, 易树健等. 2017.九寨沟7.0级地震的地震断裂及震源破裂的构造动力学机理研究[J].工程地质学报, 25 (4):1141~1150. http://www.gcdz.org/CN/abstract/abstract12453.shtml
    唐川, 马国超. 2015.基于地貌单元的小区域地质灾害易发性分区方法研究[J].地理科学, 35(1):91~98. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201501011.htm
    田春山, 刘希林, 汪佳. 2016.基于CF和Logistic回归模型的广东省地质灾害易发性评价[J].水文地质工程地质, 43 (6):154~ 170. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm
    许冲, 徐锡伟, 吴熙彦, 等.2013a.2008年汶川地震滑坡详细编目及其空间分布规律分析[J].工程地质学报, 21(1):25~44. http://www.gcdz.org/CN/abstract/abstract11246.shtml
    许冲, 徐锡伟, 郑文俊.2013b.2013年7月22日岷县漳县MS6.6级地震滑坡编录与空间分布规律分析[J].工程地质学报, 21(5):736~749. http://www.gcdz.org/CN/abstract/abstract11342.shtml
    许冲, 徐锡伟.2013c.2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J].岩石力学与工程学报, 32 (S2):3888~ 3908. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2113.htm
    许强, 李为乐.2010a.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版), 42(S1):7~14. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1003.htm
    许强, 李为乐.2010b.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报, 18(6):818~826. http://www.gcdz.org/CN/abstract/abstract8731.shtml
    邹强, 王青, 刘延国. 2014.基于GIS与Logistic模型的公路泥石流易发性分析[J].水土保持通报, 34(3):185~189. http://www.cnki.com.cn/Article/CJFDTOTAL-STTB201403036.htm
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  4325
  • HTML全文浏览量:  953
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 录用日期:  2017-09-07
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回