斜坡倾倒变形的工程地质分析

黄润秋 李渝生 严明

黄润秋, 李渝生, 严明. 2017: 斜坡倾倒变形的工程地质分析. 工程地质学报, 25(5): 1165-1181. doi: 10.13544/j.cnki.jeg.2017.05.001
引用本文: 黄润秋, 李渝生, 严明. 2017: 斜坡倾倒变形的工程地质分析. 工程地质学报, 25(5): 1165-1181. doi: 10.13544/j.cnki.jeg.2017.05.001
HUANG Runqiu, LI Yusheng, YAN Ming. 2017: THE IMPLICATION AND EVALUATION OF TOPPLING FAILURE IN ENGINEERING GEOLOGY PRACTICE. JOURNAL OF ENGINEERING GEOLOGY, 25(5): 1165-1181. doi: 10.13544/j.cnki.jeg.2017.05.001
Citation: HUANG Runqiu, LI Yusheng, YAN Ming. 2017: THE IMPLICATION AND EVALUATION OF TOPPLING FAILURE IN ENGINEERING GEOLOGY PRACTICE. JOURNAL OF ENGINEERING GEOLOGY, 25(5): 1165-1181. doi: 10.13544/j.cnki.jeg.2017.05.001

斜坡倾倒变形的工程地质分析

doi: 10.13544/j.cnki.jeg.2017.05.001
基金项目: 

国家自然科学基金重点项目 41130745

国家973项目 2013CB733202

详细信息
    作者简介:

    黄润秋(1963-), 男, 博士, 教授, 博士生导师, 从事工程地质、岩石力学科研教学工作.Email:hrq@cdut.edu.cn

  • 中图分类号: P642.2

THE IMPLICATION AND EVALUATION OF TOPPLING FAILURE IN ENGINEERING GEOLOGY PRACTICE

  • 摘要: 近10年来,在山区,尤其是西部山区的工程建设和灾害防治实践中,我们发现越来越多的以“倾倒”为特征的岩质边坡变形破坏和稳定性问题,其出现的频度和造成的危害大有比肩“滑动”破坏这一边坡失稳的传统主题,成为困扰地质工程师和岩石力学工作者的又一难题。这类问题之所以难,是因为建立在以“滑动”为基础的传统边坡稳定性分析方法不再适用这类边坡。本文在大量工程实例的基础上,分析了边坡倾倒变形和破坏的基本特征,从“倾倒”变形破坏的地质过程和变形稳定性分析的基本理念出发,建立了描述倾倒边坡不同变形程度的工程地质模型,这个模型将倾倒边坡分为倾倒-坠覆、倾倒-错动、倾倒-张裂、倾倒-松弛4个区,分别对应不同的变形程度和稳定性状况,提出了各个区的具体特征和定性指标与量化指标相结合的描述指标体系,从而将倾倒的地质显现、力学机理和变形稳定性有机统一,实现了对倾倒边坡稳定性的工程地质评价。与传统的“滑动”问题不同的是,本文没有强调对这类问题采用强度稳定性的评价思路,而建议采用变形稳定性评价的理念,这似乎更适合倾倒变形这类问题的分析和评价。
  • 图  1  青藏高原东侧倾倒变形破坏分布及其与变质岩地层(各类板岩、片岩)分布的关系

    Figure  1.  Distribution of metamorphic rocks(slates and schist) and locations of toppling failure of slopes in southwestern China

    图  2  倾倒深度与坡高的关系

    Figure  2.  Relationship between slope height and toppling depth

    图  3  边坡倾倒与边坡坡度(β)、岩层倾角(α)的关系

    Figure  3.  Relationship between toppling occurrence and slope angle, dip angle of rock strata

    图  4  倾倒深度与岩层倾角(α)的关系

    Figure  4.  Relationship between strata dip angles and toppling depth

    图  5  模型试验斜坡倾倒深度与岩层倾角、坡角的关系(据黄润秋等,1994)

    Figure  5.  Relationship between toppling depth and dip angle of rock strata and slope angle obtained by base friction tests

    图  6  坚硬脆性岩层的浅层倾倒变形-破坏

    Figure  6.  Shallow toppling failure in hard rockmasses

    图  7  边坡浅层脆性倾倒

    a.边坡浅层倾倒变形;b.浅层倾倒的结构变形

    Figure  7.  Basic model of shallow toppling failure of a slope

    图  8  雅砻江锦屏水电站的斜坡深层倾倒变形

    Figure  8.  Deep-seated toppling of a slope in Yalong river

    图  9  雅砻江锦屏水电站水文站坝址由深层倾倒形成的滑坡(左为岬吧滑坡,右为水文站滑坡剖面)

    Figure  9.  Landslide formed by deep-seated toppling at Jinping hydropower in Yalong river

    图  10  斜坡倾倒-错动复合变形模式

    Figure  10.  A composite deformation of toppling deformation and slipping in a slope

    图  11  小湾水电站饮水沟及2#山梁1 460~1 600m坡面开挖地质素描图

    Figure  11.  Sketch map of slope toppling deformation at Xiaowan dam-site, Lancang river

    图  12  小湾水电站饮水沟1500~1520m马道A-A坡面开挖地质素描示意图g1~g10:片岩夹层;f1~f4:小断层、挤压带

    Figure  12.  Sketch of toppling deformation of rock strata at 1500~1520m elevation at Xiaowan dam-site

    图  13  高程1500m岩层倾角沿马道变化曲线

    Figure  13.  Variation of dip angle of rock strata at elevation of 1500m

    图  14  边坡倾倒的工程地质模型

    Figure  14.  Engineering geological model of deep-seated toppling

    图  15  岩体倾倒变形破裂发展过程

    a.弱倾倒-层间剪切滑移;b.强倾倒-层间拉张破裂;c.强倾倒-切层张剪破裂

    Figure  15.  Process of toppling deformation and fracturing

    图  16  澜沧江苗尾水电站边坡倾倒的工程地质剖面

    Figure  16.  Cross section of slope deformation and zonation at Miaowei dam-site, Langcang river

    表  1  西南地区典型倾倒边坡变形破坏实例

    Table  1.   Some examples of toppling deformation and failure

    序号边坡或灾害点边坡状态坡高/m坡度/(°)岩性及其组合岩层倾角/(°)倾倒折断深度/m备注
    1雅砻江锦屏水电站解放沟-三滩坝址倾倒变形>50040~50T3变质砂岩、板岩,炭质板岩50~60330深层
    2雅砻江锦屏水电站水文站滑坡滑坡30020~30T3变质砂岩、板岩,炭质板岩40~50250深层
    3雅砻江锦屏水电站呷巴滑坡滑坡45020~30T3变质砂岩、板岩,炭质板岩60~70约300深层
    4雅砻江锦屏水电站木里桥边坡倾倒变形变质砂岩、板岩深层
    5金沙江溪洛渡水电站库区星光3组变形体上硬下软,倾倒变形强烈32~39泥灰岩、泥质细砂岩及砂质页岩75~85浅层
    6澜沧江小湾水电站饮水沟堆积体倾倒变形(上部)20030~40花岗片麻岩,绢云母片岩、板岩70~80150~200深层
    7澜沧江小湾水电站6号山梁倾倒变形>20035~40花岗片麻岩70~8030~40浅层
    8澜沧江苗尾水电站坝址区倾倒变形>30035~45板岩、片岩夹变质砂岩50~60150~200深层
    9澜沧江黄登水电站右岸1#倾倒变形35035~4575深层
    10澜沧江黄登水电站右岸7#倾倒变形35035~4570~80深层
    11澜沧江古水水电站倾倒变形>30020~45板岩,砂岩,变质玄武岩75~85
    12澜沧江如美水电站坝址区倾倒变形>30030~40英安岩,受平行岸坡节理切割70~8050~70中等
    13黄河拉西瓦水电站倾倒变形50040~50花岗岩,受平行岸坡节理切割70~8530~60浅层
    14四川杂谷脑河二古溪边坡倾倒变形>40030~40板岩、绢云母片岩夹变质砂岩50~60>100深层
    15四川杂谷脑河西山村滑坡群(10余个)滑坡>50020~35板岩、绢云母片岩夹变质砂岩65~75>150深层
    16四川安县白什乡滑坡变形体,滑坡>40040~50板岩、绢云母片岩夹变质砂岩50~60>80深层
    17西藏加查变形体,滑坡150>45变质岩30~4020~50浅层
    下载: 导出CSV

    表  2  坝区倾倒岩体的单位拉张量λ/mm ·m-1

    Table  2.   Unite tension amount of rock layers for different toppling types

    倾倒变形分级硬质岩软质岩备注
    极强倾倒破裂A26.8~47.4未区分
    强倾倒变形B上段B120.5~33.110.3~32.9?
    下段B214.9~26.511.1~29.4?
    弱倾倒变形C10.0~16.68.3~11.9?
    下载: 导出CSV

    表  3  实测倾倒岩体纵波波速VP

    Table  3.   VP values for different types of toppling

    倾倒变形分级VP平均值范围/m·s-1备注
    极强倾倒破裂A1017~1405
    强倾倒变形B上段B11290~2111
    下段B21845~3000
    弱倾倒变形C1852~3377
    下载: 导出CSV

    表  4  斜坡深层倾倒变形分级体系

    Table  4.   Classification system of deep seated toppling deformation for slopes

    特征描述及指标极强倾倒折断破裂A强倾倒破裂B弱倾倒过渡变形C
    上段B1,切层剪张破裂下段B2,层内张裂变形
    变形破裂特征岩体强烈倾倒折断、坠覆,整体裂松弛,局部架空岩体强烈倾倒,层内强烈拉张,整体较松弛,张剪性缓裂面切层发展倾倒较为强烈,层内拉张破裂较强烈,张裂面一般不切层,局部切单层岩体倾倒变形较弱,层内错动带剪切位错,层内岩体微量张裂变形
    岩层倾角(倾倒角)α/(°)硬质岩≤40(>35~40)34~54(20 < α≤35)50~69(10 < α≤20)64~78(α≤10)
    软质岩≤35(>40)32~50(25 < α≤40)51~66(15 < α≤25)58~74(α≤15)
    最大拉张量s/mm范围值4.0~55.05.0~70.02.0~65.00~17.0
    平均值28.026.015.05.0
    单位拉张量λ/mm·m-1硬质岩27.0~50.020.0~33.015.0~27.010.0~17.0
    软质岩10.0~33.010.0~30.08.5~12.0
    卸荷变形强卸荷强卸荷总体强卸荷,下部可为弱卸荷弱卸荷
    风化特征强风化一般为弱风化上段,上部为强风化总体弱风化上段,下部为弱风化下段总体弱风化下段,部分微新岩体
    岩体结构类型碎裂架空结构,散体结构层状块裂-碎裂结构层状-块裂结构层状-似层状结构
    纵波波速VP/m·s-11000~15001500~20002000~30003000~4000
    岩体类别Ⅴ~Ⅵ类12Ⅱ类
    稳定性系数类比值1.0~1.051.05~1.151.15~1.25(有深层折断面时另行评价)>1.25
    下载: 导出CSV

    表  5  斜坡浅层倾倒变形分级体系

    Table  5.   Classification system of slope shallow toppling deformation

    特征描述及指标倾倒-折断A倾倒-张裂B倾倒松弛C卸荷松弛D
    岩体变形破裂特征强烈的倾倒-折断,岩体拉张破裂、松弛解体,局部出现宏观坠覆位移弱倾倒、强张裂,伴有岩板内部拉张裂轻微倾倒变形,岩板间张裂,处于张裂-松弛状态,整体性较好无倾倒,弱松弛,岩体整体性较好
    岩体结构碎裂-块裂架空结构,局部散体状层状块裂-碎裂结构层状-似层状-块裂结构层状-似层状结构
    岩板倾倒角α/(°)18~355~15<未倾倒
    卸荷极强卸荷强卸荷,局部弱卸荷弱卸荷局部松弛
    风化强风化强风化,局部弱风化弱风化-微风化微风化-新鲜
    最大拉张量/mm280.040.0~95.020.0~30.010.0~20.0
    纵波波速VP/m·s-1800~13001100~25002200~30003200~4200
    岩体类别Ⅴ~Ⅵ类12Ⅱ类
    稳定性系数类比值1.0~1.051.05~1.201.20~1.30>1.30
    下载: 导出CSV
  • Adhikary D P, Dyskin A V, Jewell R J, et al. 1997. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering, 30 (2):75~93. doi: 10.1007/BF01020126
    Brideau Marc-André, Stead D. 2010. Controls on block toppling using a three-dimensional distinct element approach[J]. Rock Mechanics and Rock Engineering, 43 (3):241~260. doi: 10.1007/s00603-009-0052-2
    Chen Z Y, Zhang J H, Wang X G. 1996. Simplified method to analysis rock slope toppling failure[J]. Chinese Journal of Geotechnical Engineering, 18 (6):92~95.
    Crosta G, Frattini P, Agliardi F. 2013. Deep seated gravitational slope deformations in the European Alps[J]. Tectonophysics, 605:13~33. doi: 10.1016/j.tecto.2013.04.028
    Evans S G, DeGraff J V. 2002. Catastrophic landslides:effects, occurrence, and mechanisms[M]. Boulder, Colorado:Geological Society of America.
    Goodman R E, Bray J W. 1976. Toppling of rock slopes[C]//Rock Engineering:American Society of Civil Engineers, Geotechnical Engineering Division Conference. Boulder Colorado:American Society of Civil Engineers, 2:201~234.
    Han B C, Wang S J. 1999. Mechanism for toppling deformation of slope and analysis of influencing factors on it[J]. Journal of Engineering Geology, 7 (3):213~217.
    Hoek E, Bray J W. 1981. Rock slope engineering[M]. London:Institution of Mining and Metallurgy.
    Huang R Q, Li W L. 2011. Formation, distribution and risk control of landslides in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 3 (2):97~116. doi: 10.3724/SP.J.1235.2011.00097
    Huang R Q, Wang Z R, Xu Q. 1994. Instability and failure law of countertendency layered structure rock mass slope[M]//Institute of Engineering Geology(Chengdu College of Technology).Research progress of engineering geology. Chengdu:Southwest Jiaotong University Press.
    Huang R Q. 2012. Mechanisms of large-scale landslides in China[J]. Bulletin of Engineering Geology and the Environment, 71 (1):161~170. doi: 10.1007/s10064-011-0403-6
    Huang R Q. 2008. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (8):1525~1544.
    Huang R Q. 2013. Engineering geology analysis of stability of rock high slope[M]. Beijing:Science Press.
    Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11 (2):167~194. doi: 10.1007/s10346-013-0436-y
    Leandro R.Alejano, Iván Gómez-Márquez, Roberto Martínez-Alegría. 2010. Analysis of a complex toppling-circular slope failure[J]. Engineering Geology, 114 (1):93~104.
    Lin C W, Tseng C M, Tseng Y H, et al. 2013. Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography[J]. Journal of Asian Earth Sciences, 62:389~400. doi: 10.1016/j.jseaes.2012.10.022
    Manuel, R C; Guillermo K L. 1986. Geomechanics for slope design at Chuquicamata Mine, Chile[C]//Proceedings of the International Symposium on Engineering in Complex Rock Formations, Beijing, 3-7 November, 1986. Beijing:Science Press:399~407.
    Tan R J, Yang X Z, Hu R L. 2009. Review of deformation mechanism and stability analysis of anti-dipped rock slopes[J]. Rock and Soil Mechanics, 30 (S2):479-484, 523.
    Wang S J. 1982. On the Mechanism and process of slope deformation in an open pit mine[J]. Chinese Journal of Geotechnical Engineering, 4 (1):76~83.
    Wang X G, Jia Z X, Cheng Z Y. 1996. The research of stability analysis of toppling failure of jointed rock slopes[J]. Journal of Hydraulic Engineering, (3):7~12, 21.
    Xu B, Li Y R. 1979. Analysis of rock mass structure of toppling failure-landslide failure in Jinchuan open-pit mine 1# area[M]//Engineering geological mechanics problems of rock mass. Beijing:Science Press.
    Zhang Z Y, Wang L S, Wang S T, et al. 2009. Priciple of engineering geology analysis(the Third Edition)[M]. Beijing:Geological Publishing House.
    陈祖煜, 张建红, 汪小刚. 1996.岩石边坡倾倒稳定分析的简化方法[J].岩土工程学报, 18 (6):92~95. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC606.012.htm
    韩贝传, 王思敬. 1999.边坡倾倒变形的形成机制与影响因素分析[J].工程地质学报, 7 (3):213~217. http://www.gcdz.org/CN/abstract/abstract9551.shtml
    黄润秋, 王峥嵘, 许强. 1994. 反倾向层状结构岩体边坡失稳破坏规律研究[M]//成都理工学院工程地质研究所. 工程地质研究进展. 成都: 西南交通大学出版社: 47~51.
    黄润秋. 2008.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报, 27 (8):1525~1544. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808004.htm
    黄润秋. 2013.岩石高边坡稳定性工程地质分析[M].北京:科学出版社.
    谭儒蛟, 杨旭朝, 胡瑞林. 2009.反倾岩体边坡变形机制与稳定性评价研究综述[J].岩土力学. 30 (S2):479-484, 523. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2104.htm
    汪小刚, 贾志欣, 陈祖煜. 1996.岩石边坡的倾倒破坏的稳定分析方法[J].水利学报, (3):7~12. http://youxian.cnki.com.cn/yxdetail.aspx?filename=CQJT20170608006&dbname=CAPJ2015
    王思敬. 1982.金川露天矿边坡变形机制及过程[J].岩土工程学报, 4 (1):76~83. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198201006.htm
    许兵, 李毓瑞. 1979. 金川露天矿一区边坡倾倒-滑坡破坏的岩体结构分析[M]//岩体工程地质力学问题. 北京: 科学出版社.
    张倬元, 王兰生, 王仕天, 等. 2009.工程地质分析原理(第三版)[M].北京:地质出版社.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  4119
  • HTML全文浏览量:  777
  • PDF下载量:  1126
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-30
  • 修回日期:  2017-08-10
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回