NEW METHOD OF FIELD MEASUREMENT AND CALCULATION FOR VOLUMETRIC FRACTURE RATE OF ROCK MASS
-
摘要: 裂隙率作为表征岩体裂隙特征的一项重要参数,有线裂隙率、面裂隙率、体裂隙率3种表征方法。目前常用测线法、统计窗法获取线、面裂隙率仅能从一维或二维反映裂隙发育情况,其方法还存在测量结果随机性、应用受出露条件所限等不足;现有体裂隙率测量方法也存在着实际应用性较差、成本高等问题,尚缺乏简便易操作的野外测量方法。为此本文提出了一种新的野外测量岩体体裂隙率的工作方法——球体法。由于构造、成岩裂隙发育的组系性、方向性,球体法根据各组裂隙产状从不同方向进行观测,通过多次测量统计岩体出露面上裂隙的发育特征,推断岩体内部裂隙的发育状况,其值能更好地反映局部区域岩体内部裂隙发育程度。此外,在测量时利用专利仪器可以得到沿裂隙面法线方向上隙宽以及隙间距数据真实值,测量条件对出露面平整情况要求不高,测量结果受露头平整性影响不大,具有更好的实用性。本文以安庆大龙山采石场研究区为例应用球体法,野外现场测量表明该方法可以在较为方便操作的基础上实现快速测量;研究区体裂隙率均值为2.286%,集中分布在1% ~4%,结合研究区实际情况以及误差分析结果,球体法可以很好地反映研究区各个测量点的裂隙发育程度。Abstract: As an important parameter to characterize the fracture characteristics of rock mass,we characterize the fracture rate from the linear,surface and volumetric perspective. However,the available linear measurement method and statistical window method,which obtain the linear and surface fracture rate from 1-D or 2-D perspective,have the disadvantages of randomness of measurement results and limited application conditions. And the existing method of volumetric fracture rate also has some problems such as poor practical application and high cost. There is still a lack of easy-to-operate method to measure the rate of fissures in the field. Therefore,a new sphere method is proposed to measure volumetric fracture rate of rock mass in the field. Due to the unique tectonic and statistical regularity of the structure and diagenetic fissures,the sphere method observes each group of fracture occurrences from different directions. The development of the rock mass can be statistically inferred by measuring the developmental characteristics of each group of cracks on the limited exposed surface of rock mass. And its value can better reflect the development degree of the internal crack of the local rock mass. In addition,the spherical method can obtain the true value of the gap width and the gap spacing data along the normal direction of the fracture surface by using the patented instrument at the field. And the flatness of the exposed surface of the rock mass affect the measurement result hardly. Taking Dalongshan quarry in Anqing as the study area,field measurements of spheroid method show that the average volumetric fracture rate is 2.286% and the overall difference is concentrated in 1% ~4%. The method can realize rapid measurement on the basis of more convenient operation in the field. Combining the actual situation of the study area and the results of error analysis,the sphere method can reflect the degree of fracture development at each measurement point in the study area.
-
Key words:
- Volumetric fracture rate /
- Sphere method /
- Field measurement /
- Dalong mountain
-
表 1 No.1号测量点第1组裂隙第1次测量体积计算表
Table 1. Table for calculation volume of the No.1 fractures at No.1 measurement point for the first time
测量次数 裂隙产状 裂隙编号 隙距hi/cm 隙宽ni/cm 裂隙切面体积/cm3
$ {{V_i} = \pi {n_i}\left({{R^2} - h_i^2} \right)}$裂隙体积/cm3
$ {{V_1} = \pi {n_1}{R^2} + \sum\nolimits_{i = 2}^n {} {V_i}}$第1次 NE22°∠43° 1 0.0 0.045 706.858 4140.874 2 1.7 0.021 329.486 3 5.5 0.020 310.358 4 8.7 0.043 654.993 5 12.6 0.063 926.758 6 15.0 0.015 214.414 7 19.5 0.030 399.563 8 23.0 0.012 148.610 9 26.5 0.030 338.868 10 28.1 0.035 376.134 11 44.6 0.023 73.823 12 48.2 0.013 14.438 表 2 No.1号测量点裂隙4次测量计算结果
Table 2. The volumetric fracture rate calculations of No.1measurement point
裂隙组(j) 类型 平均产状 测量次数 球体内单组裂隙体积/cm3 球体内平均裂隙体积/cm3 裂隙面法向裂隙率/% 1 层面 NE25°∠46° 1 4140.87 3597.49 0.791 2 3706.76 3 3302.84 4 3239.5 2 构造 SE118°∠87° 1 3313.99 3419.68 0.653 2 3802.93 3 3092.21 4 3469.62 3 构造 NE44°∠77° 1 2144.68 1895.62 0.362 2 2247.09 3 1517.28 4 1673.45 4 构造 SE92°∠50° 1 681.11 820.78 0.157 2 793.08 3 684.18 4 1124.77 表 3 研究区1~18号测量点体裂隙率值计算结果
Table 3. The volume fracture rate calculations of 1~18 measurement points
测量点编号 所属宕口 体裂隙率/% 测量点编号 所属宕口 体裂隙率/% 测量点编号 所属宕口 体裂隙率/% 1 西1 1.859 8 东1 1.978 15 东1 1.973 2 西1 2.510 9 东1 5.023 16 西3 0.342 3 西1 2.554 10 东1 1.366 17 西3 0.845 4 西2 1.335 11 东1 2.582 18 西3 0.895 5 西2 2.736 12 东1 4.190 均值 2.286 6 西2 3.518 13 东1 2.853 最大值 5.023 7 东1 1.818 14 东1 2.773 最小值 0.342 -
Cai Y Q, Liu Y C. 2001. Geometry parameter analysis on the fracture in tercon nectivity of rock mass surrounding nuclear waste repositories[J]. Journal of Geological Hazards and Environment Preservation, 12(1): 33-39. Chen D J, Yu Y Z, Ma N W, et al. 2000. Some main problems on the stability of high permanent shiplock slope for three gorges project[J]. Journal of Engineering Geology, 8(1): 7-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200001002 Fan L M, Li N. 2005. Study on rock mass joint measurement based on digital photogrammetry[J]. Chinese Journal of Rock Mechanics and Engineering, 24(5): 792-797. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb200905029 Han A G, Nie D X. 2004. Determination of appropriate statistical section length in rock mass structure research[J]. Advances in Earth Sciences, 19 (S1): 296-299. Liang X, Zhong J G, Shi Y B, et al. 2006. Evaluation of the permeability of rock masses around the equalized room with atmoseal at Ziyili Hydropower Station, Sichuan Province[J]. Earth Science, 31(3): 417-422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200603022 Li Y P. 2005. Geometrical characteristics of fractures and rock quality assessment in granitein the Beishan Area, Gansu Province[D]. Beijing: Institute of Geology, China Earthquake Administration. Li Y W, Chen Q, Chen L. 2014. Application research on the rock structure classification by surveying line method in Tianhu rock mass[C]//Chinese Society for Rock Mechanics and Engineering, et al. Proceedings of the Fifth Symposium on Waste Underground Disposal. Beijing: [s.n]: 5. Ma S Z, Jia H B, Tang H M, et al. 2002. Appraise quality of engineering rock mass with rock cranny ratio based on 3-D network modeling of rock discontinuity[J]. Hydrogeology & Engineering Geology, 29(1): 10-12. Ni C Z, Liu C X, Zhang S T. 2013. Estimation of three-dimensional distribution of fissures according to fissure traces on outcrops[J]. Oil & Gas Geology, 34(1): 102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201301013 Pan H Y, Wan J W, Liang X. 2006. Method for determination of representative elementary volume of fractured rate of rock mass[J]. Advances in Science and Technology of Water Resources, 26(5): 18-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz200605005 Press P, Incorporated. 1978. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 15(6): 319-368. doi: 10.1016-0148-9062(78)91472-9/ Priest S D, Hudson J A. 1981. Estimation of discontinuity spacing and tracelength using scanlinesurveys[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18(3): 183-197. doi: 10.1016/0148-9062(81)90973-6 Song X C, Xu W Y. 2004. Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks(Ⅰ):generation of fracture network[J]. Chinese Journal of Rock Mechanics and Engineering, 23(12): 2015-2015. Wang D C, Zhang R Q, Shi Y H, et al. 1995. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House: 18. Wang Z W, Ning L B, Xu H L, et al. 2018. An instrument for measuring volumetric fracture rate of rock mass: China, CN207379386U[P]. 2018-05-18. Wei X, Yang C H. 2015. A method of geometric parameter determination of drilling rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 34(9): 1758-1766. Wu A Q, Zhou H M, Ren F. 1998. Research on 3-D rock joint network simulation techniquesand its application to TGP[J]. Journal of Yangtze River Scientific Research Institute, 15 (6): 15-18, 22. Xia L, Liu X F, Yu Q C. 2010. Determining representative elementary volume of fracturedrock mass based on blockiness analysis[J]. Rock and Soil Mechanics, 31 (12): 3991-3996, 4005. Yuan L, Zhou J W, Wen B, et al. 2017. Threshold of ecological geo-indicators of green coating on high-steep slope of limestone[J]. Journal of Yangtze River Scientific Research Institute, 34(7): 36-40. Zhang L, Einstein H H. 1998. Estimating the mean trace length of rockdiscontinuities[J]. Rock Mechanics and Rock Engineering, 31(4): 217-235. doi: 10.1007/s006030050022 Zhang R Q, Liang X, Jin M G, et al. 2011. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House: 128. 蔡永庆, 刘亚晨. 2001.核废料地质贮存岩体裂隙结构面几何特性参数分析[J].地质灾害与环境保护, 12(1): 33-39. doi: 10.3969/j.issn.1006-4362.2001.01.008 陈德基, 余永志, 马能武, 等. 2000.三峡工程永久船闸高边坡稳定性研究中的几个主要问题[J].工程地质学报, 8(1): 7-15. doi: 10.3969/j.issn.1004-9665.2000.01.002 范留明, 李宁. 2005.基于数码摄影技术的岩体裂隙测量方法初探[J].岩石力学与工程学报, 24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010 韩爱果, 聂德新. 2004.岩体结构研究中统计区间长度的确定[J].地球科学进展, 19 (S1): 296-299. 梁杏, 钟嘉高, 施裕兵, 等. 2006.四川自一里水电站气垫式调压室围岩渗透性评价[J].地球科学, 31(3): 417-422. doi: 10.3321/j.issn:1000-2383.2006.03.022 李亚萍. 2005.甘肃北山花岗岩裂隙几何学特征研究[D].北京: 中国地震局地质研究所. http://cdmd.cnki.com.cn/Article/CDMD-85402-2006048182.htm 李亚伟, 陈强, 陈亮. 2014.测线法在天湖岩体结构划分中的应用研究[C]//中国岩石力学与工程学会等.第5届废物地下处置学术研讨会论文集.北京: [出版者不详]: 5. 马淑芝, 贾洪彪, 唐辉明, 等. 2002.利用"岩体裂隙率"评价工程岩体的质量[J].水文地质工程地质, 29(1): 10-12. doi: 10.3969/j.issn.1000-3665.2002.01.003 倪春中, 刘春学, 张世涛. 2013.从岩石露头裂隙迹线估算裂隙三维空间方向[J].石油与天然气地质, 34(1): 102-106. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201301013 潘欢迎, 万军伟, 梁杏. 2006.岩体裂隙率典型单元体确定方法探讨[J].水利水电科技进展, 26(5): 18-21. doi: 10.3880/j.issn.1006-7647.2006.05.005 宋晓晨, 徐卫亚. 2004.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报, 23(12): 2015-2020. doi: 10.3321/j.issn:1000-6915.2004.12.012 王大纯, 张人权, 史毅虹, 等. 1995.水文地质学基础[M].北京:地质出版社: 18. 王忠伟, 宁立波, 徐恒力, 等. 2018.测量岩体体裂隙率的仪器: 中国, CN207379386U[P].2018-05-18. 魏翔, 杨春和. 2015.钻孔岩体裂隙几何参数确定方法及其应用[J].岩石力学与工程学报, 34(9): 1758-1766. 邬爱清, 周火明, 任放. 1998.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报, 15 (6): 15-18, 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800004515 夏露, 刘晓非, 于青春. 2010.基于块体化程度确定裂隙岩体表征单元体[J].岩土力学, 31 (12): 3991-3996, 4005. doi: 10.3969/j.issn.1000-7598.2010.12.047 袁磊, 周建伟, 温冰, 等. 2017.石灰岩质高陡边坡覆绿生态地质指标阈值研究[J].长江科学院院报, 34(7): 36-40. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201707008 张人权, 梁杏, 靳孟贵, 等. 2011.水文地质学基础[M].北京:地质出版社: 128. -