岩体体裂隙率野外测量及计算方法的研究

张杨 宁立波 尹峰 赵国红 白冰珂 朱晛亭

张杨, 宁立波, 尹峰, 赵国红, 白冰珂, 朱晛亭. 2020: 岩体体裂隙率野外测量及计算方法的研究. 工程地质学报, 28(1): 10-18. doi: 10.13544/j.cnki.jeg.2018-387
引用本文: 张杨, 宁立波, 尹峰, 赵国红, 白冰珂, 朱晛亭. 2020: 岩体体裂隙率野外测量及计算方法的研究. 工程地质学报, 28(1): 10-18. doi: 10.13544/j.cnki.jeg.2018-387
ZHANG Yang, NING Libo, YIN Feng, ZHAO Guohong, BAI Bingke, ZHU Xianting. 2020: NEW METHOD OF FIELD MEASUREMENT AND CALCULATION FOR VOLUMETRIC FRACTURE RATE OF ROCK MASS. JOURNAL OF ENGINEERING GEOLOGY, 28(1): 10-18. doi: 10.13544/j.cnki.jeg.2018-387
Citation: ZHANG Yang, NING Libo, YIN Feng, ZHAO Guohong, BAI Bingke, ZHU Xianting. 2020: NEW METHOD OF FIELD MEASUREMENT AND CALCULATION FOR VOLUMETRIC FRACTURE RATE OF ROCK MASS. JOURNAL OF ENGINEERING GEOLOGY, 28(1): 10-18. doi: 10.13544/j.cnki.jeg.2018-387

岩体体裂隙率野外测量及计算方法的研究

doi: 10.13544/j.cnki.jeg.2018-387
基金项目: 

国家自然科学基金 41572212

安徽省国土资源厅科技项目 KZ16Z523

详细信息
    作者简介:

    张杨(1992-),男,硕士生,主要从事水文地质、环境地质等方面的研究.E-mail: 931372325@qq.com

    通讯作者:

    宁立波(1966-),男,博士,副教授,主要从事水文地质、环境地质等方面的教学和科研工作.E-mail: ninglibo200294@163.com

  • 中图分类号: TU459+.9

NEW METHOD OF FIELD MEASUREMENT AND CALCULATION FOR VOLUMETRIC FRACTURE RATE OF ROCK MASS

Funds: 

the National Natural Science Foundation of China 41572212

the Technology Project of Department of Natural Resources of Anhui Province KZ16Z523

  • 摘要: 裂隙率作为表征岩体裂隙特征的一项重要参数,有线裂隙率、面裂隙率、体裂隙率3种表征方法。目前常用测线法、统计窗法获取线、面裂隙率仅能从一维或二维反映裂隙发育情况,其方法还存在测量结果随机性、应用受出露条件所限等不足;现有体裂隙率测量方法也存在着实际应用性较差、成本高等问题,尚缺乏简便易操作的野外测量方法。为此本文提出了一种新的野外测量岩体体裂隙率的工作方法——球体法。由于构造、成岩裂隙发育的组系性、方向性,球体法根据各组裂隙产状从不同方向进行观测,通过多次测量统计岩体出露面上裂隙的发育特征,推断岩体内部裂隙的发育状况,其值能更好地反映局部区域岩体内部裂隙发育程度。此外,在测量时利用专利仪器可以得到沿裂隙面法线方向上隙宽以及隙间距数据真实值,测量条件对出露面平整情况要求不高,测量结果受露头平整性影响不大,具有更好的实用性。本文以安庆大龙山采石场研究区为例应用球体法,野外现场测量表明该方法可以在较为方便操作的基础上实现快速测量;研究区体裂隙率均值为2.286%,集中分布在1% ~4%,结合研究区实际情况以及误差分析结果,球体法可以很好地反映研究区各个测量点的裂隙发育程度。
  • 图  1  正交裂隙、斜交裂隙测量真隙宽与视隙宽的区别

    Figure  1.  The distinctions between true-gap-width and pseudo-gap-width of fractures which are orthogonal or oblique to an outcrop plane

    图  2  三维球体裂隙率测量原理示意图

    Figure  2.  The schematic diagram showing method of measurement in a 3-dimensional sphere

    图  3  野外测量裂隙隙距以及仪器示意图

    a.野外裂隙隙距测量示意图;b.测量仪器

    Figure  3.  The schematic diagram showing the instrument to measure gap width of fractures

    图  4  体裂隙率计算示意图

    Figure  4.  The schematic diagram showing calculation method of volumetric fracture rate

    图  5  安庆大龙山集贤关研究区测量点分布图

    Figure  5.  The distribution diagram of every measurement point in Dalong Mountain, Anqing

    图  6  研究区1~18号测量点体裂隙率值频率分布图

    Figure  6.  The histograph of volumetric fracture rate of every measurement point

    表  1  No.1号测量点第1组裂隙第1次测量体积计算表

    Table  1.   Table for calculation volume of the No.1 fractures at No.1 measurement point for the first time

    测量次数 裂隙产状 裂隙编号 隙距hi/cm 隙宽ni/cm 裂隙切面体积/cm3
    $ {{V_i} = \pi {n_i}\left({{R^2} - h_i^2} \right)}$
    裂隙体积/cm3
    $ {{V_1} = \pi {n_1}{R^2} + \sum\nolimits_{i = 2}^n {} {V_i}}$
    第1次 NE22°∠43° 1 0.0 0.045 706.858 4140.874
    2 1.7 0.021 329.486
    3 5.5 0.020 310.358
    4 8.7 0.043 654.993
    5 12.6 0.063 926.758
    6 15.0 0.015 214.414
    7 19.5 0.030 399.563
    8 23.0 0.012 148.610
    9 26.5 0.030 338.868
    10 28.1 0.035 376.134
    11 44.6 0.023 73.823
    12 48.2 0.013 14.438
    下载: 导出CSV

    表  2  No.1号测量点裂隙4次测量计算结果

    Table  2.   The volumetric fracture rate calculations of No.1measurement point

    裂隙组(j) 类型 平均产状 测量次数 球体内单组裂隙体积/cm3 球体内平均裂隙体积/cm3 裂隙面法向裂隙率/%
    1 层面 NE25°∠46° 1 4140.87 3597.49 0.791
    2 3706.76
    3 3302.84
    4 3239.5
    2 构造 SE118°∠87° 1 3313.99 3419.68 0.653
    2 3802.93
    3 3092.21
    4 3469.62
    3 构造 NE44°∠77° 1 2144.68 1895.62 0.362
    2 2247.09
    3 1517.28
    4 1673.45
    4 构造 SE92°∠50° 1 681.11 820.78 0.157
    2 793.08
    3 684.18
    4 1124.77
    下载: 导出CSV

    表  3  研究区1~18号测量点体裂隙率值计算结果

    Table  3.   The volume fracture rate calculations of 1~18 measurement points

    测量点编号 所属宕口 体裂隙率/% 测量点编号 所属宕口 体裂隙率/% 测量点编号 所属宕口 体裂隙率/%
    1 西1 1.859 8 东1 1.978 15 东1 1.973
    2 西1 2.510 9 东1 5.023 16 西3 0.342
    3 西1 2.554 10 东1 1.366 17 西3 0.845
    4 西2 1.335 11 东1 2.582 18 西3 0.895
    5 西2 2.736 12 东1 4.190 均值 2.286
    6 西2 3.518 13 东1 2.853 最大值 5.023
    7 东1 1.818 14 东1 2.773 最小值 0.342
    下载: 导出CSV
  • Cai Y Q, Liu Y C. 2001. Geometry parameter analysis on the fracture in tercon nectivity of rock mass surrounding nuclear waste repositories[J]. Journal of Geological Hazards and Environment Preservation, 12(1): 33-39.
    Chen D J, Yu Y Z, Ma N W, et al. 2000. Some main problems on the stability of high permanent shiplock slope for three gorges project[J]. Journal of Engineering Geology, 8(1): 7-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200001002
    Fan L M, Li N. 2005. Study on rock mass joint measurement based on digital photogrammetry[J]. Chinese Journal of Rock Mechanics and Engineering, 24(5): 792-797. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb200905029
    Han A G, Nie D X. 2004. Determination of appropriate statistical section length in rock mass structure research[J]. Advances in Earth Sciences, 19 (S1): 296-299.
    Liang X, Zhong J G, Shi Y B, et al. 2006. Evaluation of the permeability of rock masses around the equalized room with atmoseal at Ziyili Hydropower Station, Sichuan Province[J]. Earth Science, 31(3): 417-422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200603022
    Li Y P. 2005. Geometrical characteristics of fractures and rock quality assessment in granitein the Beishan Area, Gansu Province[D]. Beijing: Institute of Geology, China Earthquake Administration.
    Li Y W, Chen Q, Chen L. 2014. Application research on the rock structure classification by surveying line method in Tianhu rock mass[C]//Chinese Society for Rock Mechanics and Engineering, et al. Proceedings of the Fifth Symposium on Waste Underground Disposal. Beijing: [s.n]: 5.
    Ma S Z, Jia H B, Tang H M, et al. 2002. Appraise quality of engineering rock mass with rock cranny ratio based on 3-D network modeling of rock discontinuity[J]. Hydrogeology & Engineering Geology, 29(1): 10-12.
    Ni C Z, Liu C X, Zhang S T. 2013. Estimation of three-dimensional distribution of fissures according to fissure traces on outcrops[J]. Oil & Gas Geology, 34(1): 102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201301013
    Pan H Y, Wan J W, Liang X. 2006. Method for determination of representative elementary volume of fractured rate of rock mass[J]. Advances in Science and Technology of Water Resources, 26(5): 18-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz200605005
    Press P, Incorporated. 1978. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 15(6): 319-368. doi: 10.1016-0148-9062(78)91472-9/
    Priest S D, Hudson J A. 1981. Estimation of discontinuity spacing and tracelength using scanlinesurveys[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18(3): 183-197. doi: 10.1016/0148-9062(81)90973-6
    Song X C, Xu W Y. 2004. Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks(Ⅰ):generation of fracture network[J]. Chinese Journal of Rock Mechanics and Engineering, 23(12): 2015-2015.
    Wang D C, Zhang R Q, Shi Y H, et al. 1995. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House: 18.
    Wang Z W, Ning L B, Xu H L, et al. 2018. An instrument for measuring volumetric fracture rate of rock mass: China, CN207379386U[P]. 2018-05-18.
    Wei X, Yang C H. 2015. A method of geometric parameter determination of drilling rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 34(9): 1758-1766.
    Wu A Q, Zhou H M, Ren F. 1998. Research on 3-D rock joint network simulation techniquesand its application to TGP[J]. Journal of Yangtze River Scientific Research Institute, 15 (6): 15-18, 22.
    Xia L, Liu X F, Yu Q C. 2010. Determining representative elementary volume of fracturedrock mass based on blockiness analysis[J]. Rock and Soil Mechanics, 31 (12): 3991-3996, 4005.
    Yuan L, Zhou J W, Wen B, et al. 2017. Threshold of ecological geo-indicators of green coating on high-steep slope of limestone[J]. Journal of Yangtze River Scientific Research Institute, 34(7): 36-40.
    Zhang L, Einstein H H. 1998. Estimating the mean trace length of rockdiscontinuities[J]. Rock Mechanics and Rock Engineering, 31(4): 217-235. doi: 10.1007/s006030050022
    Zhang R Q, Liang X, Jin M G, et al. 2011. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House: 128.
    蔡永庆, 刘亚晨. 2001.核废料地质贮存岩体裂隙结构面几何特性参数分析[J].地质灾害与环境保护, 12(1): 33-39. doi: 10.3969/j.issn.1006-4362.2001.01.008
    陈德基, 余永志, 马能武, 等. 2000.三峡工程永久船闸高边坡稳定性研究中的几个主要问题[J].工程地质学报, 8(1): 7-15. doi: 10.3969/j.issn.1004-9665.2000.01.002
    范留明, 李宁. 2005.基于数码摄影技术的岩体裂隙测量方法初探[J].岩石力学与工程学报, 24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010
    韩爱果, 聂德新. 2004.岩体结构研究中统计区间长度的确定[J].地球科学进展, 19 (S1): 296-299.
    梁杏, 钟嘉高, 施裕兵, 等. 2006.四川自一里水电站气垫式调压室围岩渗透性评价[J].地球科学, 31(3): 417-422. doi: 10.3321/j.issn:1000-2383.2006.03.022
    李亚萍. 2005.甘肃北山花岗岩裂隙几何学特征研究[D].北京: 中国地震局地质研究所. http://cdmd.cnki.com.cn/Article/CDMD-85402-2006048182.htm
    李亚伟, 陈强, 陈亮. 2014.测线法在天湖岩体结构划分中的应用研究[C]//中国岩石力学与工程学会等.第5届废物地下处置学术研讨会论文集.北京: [出版者不详]: 5.
    马淑芝, 贾洪彪, 唐辉明, 等. 2002.利用"岩体裂隙率"评价工程岩体的质量[J].水文地质工程地质, 29(1): 10-12. doi: 10.3969/j.issn.1000-3665.2002.01.003
    倪春中, 刘春学, 张世涛. 2013.从岩石露头裂隙迹线估算裂隙三维空间方向[J].石油与天然气地质, 34(1): 102-106. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201301013
    潘欢迎, 万军伟, 梁杏. 2006.岩体裂隙率典型单元体确定方法探讨[J].水利水电科技进展, 26(5): 18-21. doi: 10.3880/j.issn.1006-7647.2006.05.005
    宋晓晨, 徐卫亚. 2004.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报, 23(12): 2015-2020. doi: 10.3321/j.issn:1000-6915.2004.12.012
    王大纯, 张人权, 史毅虹, 等. 1995.水文地质学基础[M].北京:地质出版社: 18.
    王忠伟, 宁立波, 徐恒力, 等. 2018.测量岩体体裂隙率的仪器: 中国, CN207379386U[P].2018-05-18.
    魏翔, 杨春和. 2015.钻孔岩体裂隙几何参数确定方法及其应用[J].岩石力学与工程学报, 34(9): 1758-1766.
    邬爱清, 周火明, 任放. 1998.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报, 15 (6): 15-18, 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800004515
    夏露, 刘晓非, 于青春. 2010.基于块体化程度确定裂隙岩体表征单元体[J].岩土力学, 31 (12): 3991-3996, 4005. doi: 10.3969/j.issn.1000-7598.2010.12.047
    袁磊, 周建伟, 温冰, 等. 2017.石灰岩质高陡边坡覆绿生态地质指标阈值研究[J].长江科学院院报, 34(7): 36-40. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201707008
    张人权, 梁杏, 靳孟贵, 等. 2011.水文地质学基础[M].北京:地质出版社: 128.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2640
  • HTML全文浏览量:  1841
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-27
  • 录用日期:  2019-12-13
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回