CHARACTERISTICS AND RUNOUT MECHANISM OF SUPER-LARGE XINMO ROCK AVALANCHE-DEBRIS FLOW IN DIEXI, SICHUAN PROVINCE
-
摘要: 2017年6月24日茂县叠溪镇新磨村发生体积近800×104 m3的灾难性特大型滑坡-碎屑流灾害。通过现场调查、遥感解译和资料分析,本文对灾害发育的地质环境条件,崩滑危岩体及运移堆积特征,降雨及地震对崩滑的触发作用等进行了研究,探讨了影响碎屑流运动性的主要效应及其致灾机理,并评价了类似灾害的监测预警新方法。研究认为:(1)新磨村位于1933年叠溪MS7.5地震前已经存在的大型老滑坡堆积体上,多次历史强震和历年降雨循环使滑源区砂板岩坡体表层卸荷带失稳剥离,内部岩体完整性和强度进一步损伤劣化,滑源区在2003年之前已经发育了多条宽大裂缝,并存在显著滑前变形前兆,新磨滑坡本质上是一次后地震机制的灾难性高速岩质滑坡-碎屑流。(2)新磨基岩顺层滑坡体积约150×104 m3,但有约600×104 m3沟道老崩坡积体被刮铲、裹携。滑坡体高位撞击使老堆积体内“土拱效应”快速丧失并获得加速,“刮铲-裹携效应”促进了滑坡-碎屑流的流动性和扩散性,但大规模的裹携也限制了碎屑流运移得更远。这种冲击加载-刮铲裹携的破坏机制与1986年新滩滑坡、2000年易贡滑坡和2004年贵州纳雍左营滑坡等类似。(3)滑坡-碎屑流产生的地震信号分析可再现整个滑坡、冲击、运移、停积等全过程,震前InSAR形变资料分析则揭示了显著的变形前兆,两者结合应是未来这类超视距崩滑-碎屑流灾害早期识别、评价和预警的新方法。(4)鉴于滑后新磨流域仍然存在大量新老裂缝及其切割而成的危险块体,建议立即开展详细的灾害调查、风险评价和监测预警工作,避免类似灾害重复发生。Abstract: On June 24, 2017 a super-large catastrophic rock avalanche-debris flow of 800×104 m3 took place at Xinmo village, Maoxian county of Sichuan Province. Based on the field investigation, remote sensing interpretation and data analysis, the paper studies the geo-environmental conditions of the rock avalanche, the characteristics of failure, movement and deposition, and the triggering actions of rainfall and earthquakes. The main effects on mobility of rock debris and the hazardous mechanism are discussed. The new technology and method of monitoring and warning for such geohazards are evaluated. It is believed as follows. (1)Xinmo village is located in the deposit of an old large landslide before the 1933 Diexi MS 7.5 earthquake. The multiple strong historic-prehistoric earthquakes and the annual rainfall not only made the surface unloaded belt of Triassic slate slope spelled, but also damaged and weakened the rockmass integrity and strength. There have developed large tensional fissures in the ridge slope before year 2003 and existed remarkable emplacement portent before failure. Therefore, the event is essentially a post-earthquake, high speed rock avalanche-debris flow. (2)The rock avalanche is about 150×104 m3 but scratched and entrained a total of 600×104 m3 old colluviums. The huge impact on the old colluviums made the inner soil arching effect suddenly lost. The effect of entrainment of the old colluviums greatly increased their mobility and diffusion but the large entrained colluviums conversely made the whole mass not flowing further. Such a failure mechanism of impact-loading and entrainment is similar to the former landslides in Xintan, Yigong and Nayong. (3)The seismic signals generated by rock avalanche clearly display the process of collapsing, impacting, moving and depositing. The emplacement monitoring of multi-temporal InSAR data clearly displayed the displacement precursor on the slope. The combination of two technologies is a promising new method of early identification, evaluation and warning of similar landslide of ultra-sight and in difficult geo-environment. Finally, with regard to the old and new fissures and their separated blocks, it is suggested to immediately make detailed investigation, risk assessment and monitoring-warning so as to avoid similar disasters.
-
图 1 青藏高原东缘活动构造图(改自张岳桥等,2016)
Figure 1. Active tectonic map of eastern Tibetan Plateau(modified after Zhang et al., 2016)
图 9 1933年叠溪地震时新磨崩滑及银屏崖崩塌解译
a. 洪时中等(2011)文章中照片;b. Google Earth
Figure 9. Picture taken during 1933 Diexi earthquake suggesting small avalanche in Xinmo village and Yinpinya cliff
-
Allstadt K. 2013. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms[J]. Journal of Geophysical Research Earth Surface, 118(3):1472-1490. doi: 10.1002/jgrf.20110 An W P, Zhao J Q, Yan X B, et al. 2008. Tectonic deformation of lacustrine sediments in Qiangyang on the Minjiang fault zone and ancient earthquake[J]. Seismology and Geology, 30 (4):980-988. https://www.researchgate.net/publication/221924080_Tectonic_Background_of_the_Wenchuan_Earthquake Chang L Q. 1938. Investigation report Diexi earthquake of Sichuan[J]. Geological Review, 3 (3):251-291. https://www.researchgate.net/publication/286608507_Recent_advances_of_research_on_Diexi_earthquake Chen C H, Chao W A, Wu Y M, et al. 2013. A seismological study of landquakes using a real-time broad-band seismic network[J]. Geophysical Journal International, 194(2):885-898. doi: 10.1093/gji/ggt121 Chen Z F, Kong J M, Wang C H. 2006. Characteristics of the falling-slide type landslide in Nayong in Guizhou province and the lessons learned for disaster mitigation in other areas[J]. The Chinese Journal of Geological Hazard and Control, 17 (3):32-35. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH200603009.htm Cheng Q G, Zhang Z Y, Cui P. 2004. Dynamical mechanism and stability criterion of landslide under lockup of soil arching[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (17):2855-2864. doi: 10.3321/j.issn:1000-6915.2004.17.002 Dammeier F, Moore J R, Haslinger F, et al. 2011. Characterization of alpine rockslides using statistical analysis of seismic signals[J]. Journal of Geophysical Reaearch, 116(116):4042. https://utah.pure.elsevier.com/en/publications/characterization-of-alpine-rockslides-using-statistical-analysis- Hong S Z, Liu S L, Xu J T, et al. 2011. Interpretation and research on photographs about Diexi earthquake shoot by Zhuang Benxue in 1934[J]. Seismology and Geology, 33 (1):208-214. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CSSY201000012.htm Huang R Q, Pei X J, Li T B. 2008. Basic characteristics and formation mechanism of the largest scale landslide at Daoguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 16 (6):730-741. https://www.researchgate.net/publication/285822541_Basic_characteristics_and_formation_mechanism_of_the_largest_scale_landslide_at_Daguangbao_occurred_during_the_Wenchuan_earthquake Huang R Q, Pei X J, Cui S H. 2016. Cataclastic characteristics and formation mechanism of rock mass in sliding zone of Daguangbao landslide[J]. Chinese Journal of Rock Mechanism and Engineering, 35 (1):1-15. https://www.researchgate.net/publication/303885033_Geological_causes_of_earthquake_induced_large_landslide_Case_study_of_Daguangbao_landslide Huang Z Z, Tang R C, Liu S L. 2002. Re-discussion of the seismogenic structure of the Diexi large earthquake in 1933 and the arc tectonics on Jiaochang, Sichuan province[J]. Earthquake Research in China, 18 (2):183-192. doi: 10.1007/s11629-017-4609-3 Hungr O, Evans S G. 2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 116(9-10):1240-1252. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/116/9-10/1240/2122/entrainment-of-debris-in-rock-avalanches-an King J. 1996. Tsing Shan Debris Flow[R]. Hong Kong: Hong Kong Government, Geotechnical Engineering Office, Special Project Report SPR 6/96: 133. Legros F. 2002. The mobility of long-runout landslides[J]. Engineering Geology, 63(3):301-331. https://www.sciencedirect.com/science/article/pii/S0013795201000904 Li C Y, Wang J W. 2017. Is Maoxian collapse a post-trouble of big earthquake?[N/OL]. China Science Daily, (2017-06-26)(01)[2017-08-07]. http://news.sciencenet.cn/ , (2017-06-26). Li T C. 1979. The relationship between earthquakes and landslides and explore seismic landslide forecast[C]//Landslide Anthology, Episode 2. Beijing: China Railway Press: 127-132. Li Y H, Jiang H C, Xu H Y, et al. 2015. Analysis on the triggering factors of large quantities of landslides in the upper reaches of the Minjiang river, Sichuan Province[J]. Seismology and Geology, 37 (4):1147-1161. https://www.sciencedirect.com/science/article/pii/S1040618215007132 Liu C Z, Guo Q, Chen H Q. 2004. Primary analysis to Yanjiaozhai collapse in Nayong county, Guizhou province[J]. The Chinese Journal of Geological Hazard and Control, 15(4):1. https://www.sciencedirect.com/science/article/pii/S0034666711000194 Manconi A, Picozzi M, Coviello V, et al. 2016. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks[J]. Geophysical Research Letters, 43(13):6960. doi: 10.1002/2016GL069572 Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364:138-142. doi: 10.1038/364138a0 McDougall S, Hungr O. 2005. Dynamic modeling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42 (5):1437-1448. doi: 10.1139/t05-064 Metternicht G, Hurni L, Gogu R. 2005. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J]. Remote Sensing of Environment, 98 (2):284-303. https://www.researchgate.net/publication/209803092_Remote_sensing_of_landslides_An_analysis_of_the_potential_contribution_to_geo-spatial_systems_for_hazard_assessment_in_mountainous_environments Nicoletti P G, Sorriso-Valvo M. 1991. Geomorphic controls of the shape and mobility of rock avalanches[J]. Geological Society of America Bulletin, 103(10):1365-1373. doi: 10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2 Qian H, Zhou R J, Ma S H, et al. 1999. South segment of Minjiang fault and Diexi earthquake in 1993[J]. Earthquake Research in China, 15 (4):333-338. https://www.researchgate.net/publication/286608507_Recent_advances_of_research_on_Diexi_earthquake Qiao J P. 1994. Study on the regularities governing the density distribution of collapses and landslides on the upper Mingjiang River Basin[J]. Resources and Environment in the Yangtze Valley, 3 (4):365-370. https://www.sciencedirect.com/science/article/pii/S1002016006600684 State Key Laboratary of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology). 2017-08-08. Brief report of Maoxian landslide-SKLGP completely involved in the emergency work of the 6. 24 Xinmo super-large landslide, Maoxian[EB/OL]. 2017-07-07. http://www.sklgp.com/default.aspx?id:98&subid:2&newsid=1996 . 6(81): 1-7. Sun G Z, Yao B K. 1988. Landslide geology disaster and landslide investigation in China[M]//Typical Slopes in China. Beijing:Science Press:1-11. Tang R C, Jiang N Q, Liu S L. 1983. Recognition of the geological setting and the seismogenic condition for the Diexi magnitude 7.5 earthquake[J]. Journal of Seismological Research, 6 (3):327-338. doi: 10.1007/s11629-017-4609-3 Wang L S, Yang L Z, Wang X Q, et al. 2005. Discovery of huge ancient dammed lake on upstream of Minjiang river in Sichuan, China[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 32 (1):1-12. https://www.researchgate.net/publication/285875686_Discovery_of_huge_ancient_dammed_lake_on_upstream_of_Minjiang_River_in_Sichuan_China Wang L S, Zhan Z, Su D G, et al. 1988. The preliminary studies of Xintan landslide's development characteristic and the mechanism of the starting and motioning and stopping[M]//Typical Slopes in China. Beijing: Science Press: 211-217. Wang P, Zhang B, Qiu W L, et al. 2011. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet[J]. Journal of Asian Earth Sciences, 40:865-872. doi: 10.1016/j.jseaes.2010.04.006 Wang X Q, Wang L S. 2013. The pollen and spore characteristics of the Diexi ancient dammed lake on the upstream of Minjiang river[J]. Earth Science-Journal of China University of Geosciences, 38 (5):975-982. http://or.nsfc.gov.cn/handle/00001903-5/58179 Xu C, Xu X W, Wu X Y, et al. 2013. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 21 (1):25-44. https://www.sciencedirect.com/science/article/pii/S1367912010001264 Xu W Y, Zhang N, Wang Y M, et al. 1992. The combined movement of collapse impulsion and slope sliding[J]. Site Investigation Science and Technology, (6):22-25. https://www.sciencedirect.com/science/article/pii/S135063071631113X Xu X N, Wang L S. 2005. On the mechanism of slope deformation-failures and their distribution characteristics in a high earthquake-intensity area[J]. Journal of Engineering Geology, 13 (1):68-75. doi: 10.1007/s11629-017-4609-3 Xu Q, Shang Y J, Asch T, et al. 2012. Observations from the large, rapid Yigong rock slide-debris avalanche, southeast Tibet[J]. Canadian Geotechnical Journal, 49(5):589-606. doi: 10.1139/t2012-021 Yang J B. 1994. Discussion on the action of underground water and uploading of rock avalanche to the upper part of Xitan landslide[J]. Hydrogeology and Engineering Geology, (5):26-29. https://www.coursehero.com/file/19329716/经济学人2016年1期 Yang Y C, Li B Y, Yin Z S, et al. 1985. Geomorphology in Tibet[M]. Beijing:Science Press, 52-60. Yin Y P. 2009. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17 (1):29-38. https://www.sciencedirect.com/science/article/pii/S1367912009002521 Zhang Y Q, Li J, Li H L, et al. 2016. Reinvestigation on seismogenic structure of the 1933 Diexi MS7.5 earthquake, eastern margin of the Xizang(Tibetan)plateau[J]. Geological Review, 62 (2):267-276. Zhang Z Y, Wang S T, Wang L S. 1993. Analytical Principle of Engineering Geology[M]. Beijing:Geological Press. Zhao C, Lu Z, Zhang Q, et al. 2012. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 124:348-359. doi: 10.1016/j.rse.2012.05.025 Zhao X L, Deng Q D, Chen S F. 1994. Tectonic geomorphology of the Minshan uplift in western Sichuan, southwestern China[J]. Seismology and Geology, 16 (4):429-439. https://www.nepjol.info/index.php/HJS/article/download/956/953 安卫平, 赵晋泉, 闫小兵, 等. 2008.岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震[J].地震地质, 30 (4):980-988. http://www.cnki.com.cn/Article/CJFDTotal-ZSUX201412076.htm 常隆庆. 1938.四川叠溪地震调查记[J].地质论评, 3 (3):251-291. http://www.cqvip.com/qk/92061X/201002/1001272288.html 陈泽富, 孔纪名, 王成华. 2006.贵州纳雍崩塌式滑坡成灾特征及其避灾警示作用[J].中国地质灾害与防治学报, 17 (3):32-35. http://www.cnki.com.cn/Article/CJFDTotal-CXYY201535012.htm 程谦恭, 张倬元, 崔鹏. 2004.平卧"支撑拱"锁固滑坡动力学机理与稳定性判据[J].岩石力学与工程学报, 23 (17):2855-2864. doi: 10.3321/j.issn:1000-6915.2004.17.002 地质灾害防治与地质环境保护国家重点实验室(成都理工大学). 2017. 茂县专项简报[EB/OL]. 2017-07-07. http://www.sklgp.com/default.dspx?id=98&subid-2&newsid=1996 . 洪时中, 刘盛利, 徐吉廷, 等. 2011.庄本学先生1934年所摄四川叠溪震区照片的考证与解读[J].地震地质, 33 (1):208-214. https://www.wenkuxiazai.com/doc/668ba087aa00b52acfc7ca81.html 黄润秋, 裴向军, 崔圣华. 2016.大光包滑坡滑带岩体碎裂特征及其形成机制研究[J].岩石力学与工程学报, 35 (1):1-15. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17021.shtml 黄润秋, 裴向军, 李天斌. 2008.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报, 16 (6):730-741. http://www.gcdz.org/CN/abstract/abstract8349.shtml 黄祖智, 唐荣昌, 刘盛利. 2002.四川较场弧形构造与1933年叠溪地震发震构造的再讨论[J].中国地震, 18 (2):183-192. http://www.oalib.com/paper/4885054 李晨阳, 王佳雯. 2017. 茂县垮塌是大地震后患吗?[N/OL]. 中国科学报(2017-06-26)(01)[2017-08-07]), http://news.sciencenet.cn/ , 2017-06-26. 李天池. 1979. 地震与滑坡的关系及地震滑坡预测探讨[M]//滑坡文集, 第2集: 北京: 中国铁道出版社: 127-132. 李艳毫, 蒋汉朝, 徐红艳, 等.2015.四川岷江上游滑坡触发因素分析[J].地震地质, 37 (4):1147-1161. https://www.doc88.com/p-9703516352048.html 刘传正, 郭强, 陈红旗. 2004.贵州省纳雍县岩脚寨危岩崩塌灾害成因初步分析[J].中国地质灾害与防治学报, 15(4):1. http://www.cnki.com.cn/Article/CJFDTotal-CXYY201535012.htm 钱洪, 周荣军, 马声浩, 等. 1999.岷江断裂南段与1933年叠溪地震研究[J].中国地震, 15 (4):333-338. https://www.researchgate.net/profile/Zheng_Kang_Shen2/publication/289110612_Location_and_focal_mechanism_of_the_1933_Diexi_earthquake_and_its_associated_regional_tectonics/links/5981730eaca2728abee6863d/Location-and-focal-mechanism-of-the-1933-Diexi-earthquake-and-its-associated-regional-tectonics.pdf 乔建平. 1994.岷江上游崩塌滑坡分布规律研究[J].长江流域资源与环境, 3 (4):365-370. http://www.cqvip.com/QK/91299X/201508/665819519.html 孙广忠, 姚宝魁. 1988. 中国滑坡地质灾害及其研究[M]//中国典型滑坡. 北京: 科学出版社: 1-11. 唐荣昌, 蒋能强, 刘盛利. 1983.叠溪7.5级地震的地质构造背景及其对发震条件的认识[J].地震研究, 6 (3):327-338. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzyj198303011&dbname=CJFD&dbcode=CJFQ 王兰生, 杨立铮, 王小群, 等. 2005.岷江叠溪古堰塞湖的发现[J].成都理工大学学报(自然科学版), 32 (1):1-12. http://www.wenkuxiazai.com/doc/572d143b5727a5e9856a6160.html 王兰生, 詹铮, 苏道刚, 等. 1988. 新滩滑坡发育特征和启动、滑动及制动机制的初步研究[M]//中国典型滑坡. 北京: 科学出版社: 211-217. 王小群, 王兰生. 2013.岷江叠溪古堰塞湖沉积物中孢粉特征[J].地球科学, 38 (5):975-982. http://or.nsfc.gov.cn/handle/00001903-5/58179 徐卫亚, 张宁, 王永明, 等. 1992.崩塌冲击斜坡滑移联合运动分析[J].勘察科学技术, (6):22-25. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb200901004 许冲, 徐锡伟, 吴熙彦, 等. 2013. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J], 工程地质学报, 21 (1):25-44. http://www.gcdz.org/CN/abstract/abstract11246.shtml 许向宁, 王兰生. 2005.岷江上游叠溪地震区斜坡变形破坏分区特征及其成因机制分析[J].工程地质学报, 13 (1):68-75. http://www.gcdz.org/CN/abstract/abstract9160.shtml 阳吉宝. 1994.地下水和岩崩加载在新滩滑坡上段作用的讨论[J].水文地质工程地质, (5):26-29. http://www.cnki.com.cn/Article/CJFDTotal-KJXX200714288.htm 杨逸畴, 李炳元, 尹泽生, 等. 1985.西藏地貌[M].北京:科学出版社:52-60. 殷跃平. 2009.汶川八级地震滑坡特征分析[J].工程地质学报, 17 (1):29-38. http://www.gcdz.org/CN/abstract/abstract8400.shtml 张岳桥, 李建, 李海龙, 等. 2016.青藏高原东缘1933年叠溪MS7.5级地震发震构造再研究[J].地质论评, 62 (2):267-276. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-40/Nice/Transfer/Chinese/wikilex-20070908-zh-en.txt 张倬元, 王士天, 王兰生. 1993.工程地质分析原理[M].北京:地质出版社. 赵小麟, 邓起东, 陈社发. 1994.岷山隆起的构造地貌学研究[J].地震地质, 16 (4):429-439. http://bianke.cnki.net/Web/Article/DZDZ404.017.html 中国地震局. 2017-08-07. 四川省阿坝州茂县发生山体垮塌, 地震部门紧急联动做好救灾保障[EB/OL]. http://www.cea.gov.cn/publish/dizhenj/464/478/20170625155714619979767/index.html , 2017-06-25. 中国地震局. 2017. http://www.cea.gov.cn/publish/dizhenj/468/553/101710/index.html , 2017-08-08. (2017年8月8日四川九寨沟7. 0级地震专题). -