1920年海原8.5级地震高烈度区滑坡编录与分布规律

许冲 田颖颖 马思远 徐锡伟 周本刚 吴熙彦 庄建琦 高玉欣 吴玮莹 黄学强

许冲, 田颖颖, 马思远, 徐锡伟, 周本刚, 吴熙彦, 庄建琦, 高玉欣, 吴玮莹, 黄学强. 2018: 1920年海原8.5级地震高烈度区滑坡编录与分布规律. 工程地质学报, 26(5): 1188-1195. doi: 10.13544/j.cnki.jeg.2018110
引用本文: 许冲, 田颖颖, 马思远, 徐锡伟, 周本刚, 吴熙彦, 庄建琦, 高玉欣, 吴玮莹, 黄学强. 2018: 1920年海原8.5级地震高烈度区滑坡编录与分布规律. 工程地质学报, 26(5): 1188-1195. doi: 10.13544/j.cnki.jeg.2018110
XU Chong, TIAN Yingying, MA Siyuan, XU Xiwei, ZHOU Bengang, WU Xiyan, ZHUANG Jianqi, GAO Yuxin, WU Weiying, HUANG Xueqiang. 2018: INVENTORY AND SPATIAL DISTRIBUTION OF LANDSLIDES IN Ⅸ-Ⅺ HIGH INTENSITY AREAS OF 1920 HAIYUAN (CHINA) M8.5 EARTHQUAKE. JOURNAL OF ENGINEERING GEOLOGY, 26(5): 1188-1195. doi: 10.13544/j.cnki.jeg.2018110
Citation: XU Chong, TIAN Yingying, MA Siyuan, XU Xiwei, ZHOU Bengang, WU Xiyan, ZHUANG Jianqi, GAO Yuxin, WU Weiying, HUANG Xueqiang. 2018: INVENTORY AND SPATIAL DISTRIBUTION OF LANDSLIDES IN Ⅸ-Ⅺ HIGH INTENSITY AREAS OF 1920 HAIYUAN (CHINA) M8.5 EARTHQUAKE. JOURNAL OF ENGINEERING GEOLOGY, 26(5): 1188-1195. doi: 10.13544/j.cnki.jeg.2018110

1920年海原8.5级地震高烈度区滑坡编录与分布规律

doi: 10.13544/j.cnki.jeg.2018110
基金项目: 

“十三五”国家重点研发计划项目 2017YFC1501001

国家自然科学基金 41661144037

详细信息
    作者简介:

    许冲(1982-), 男, 博士, 研究员, 博士生导师, 主要从事地震滑坡方面的科研工作. Email: xc11111111@126.com

  • 中图分类号: P642.22

INVENTORY AND SPATIAL DISTRIBUTION OF LANDSLIDES IN Ⅸ-Ⅺ HIGH INTENSITY AREAS OF 1920 HAIYUAN (CHINA) M8.5 EARTHQUAKE

  • 摘要: 发生在黄土高原的1920年12月16日的海原MS8.5级大地震触发了大量的滑坡,这些滑坡直接造成了大量的人员伤亡。近年来,出现了一些关于本次地震触发滑坡的专题研究,然而,这些研究多是基于局部震区或者个别单体滑坡进行,极少有关于该地震触发滑坡详细全面的成果出现。这种情况已经成为了深入理解海原地震触发滑坡的规模与程度、发育规律等的障碍。本研究拟基于谷歌地球平台,采用人工目视解译方法,以海原地震高烈度区(Ⅸ~Ⅺ)为研究区,开展地震滑坡解译工作,并分析这些滑坡的分布规律与影响因子之间的关系。结果表明本次地震在Ⅸ~Ⅺ度区内触发了至少5384处滑坡,滑坡总面积为218.78 km2。滑坡密度最高的区域为Ⅸ烈度圈的北西部分。通过分析这些滑坡与地形、地震、地质等因子的关系发现,高程1700~2000 m为滑坡的高发与高易发区间;大多数滑坡集中发育在坡度15°~25°范围内,滑坡密度随着坡度的增加而显著增加;坡位越低,也就是距离河流越近,滑坡密度越大;新生代地层、尤其是第四系黄土覆盖地区是海原地震滑坡发生的主要区域,也是高易发区域。本文为探索黄土地区地震滑坡发育规律、减轻黄土地震滑坡灾害等提供了科学参考。
  • 图  1  研究区活动构造分布与1920年海原地震烈度图

    Figure  1.  Active faults in the study area and seismic intensity contours of the 1920 Haiyuan earthquake

    图  2  西吉县境内一处区域滑坡解译情况

    Figure  2.  Interpretation of landslides in an area of Xiji County

    图  3  研究区西北角附近一处区域滑坡解译情况

    Figure  3.  Interpretation of landslides in the northwestern of the study area

    图  4  研究区下伏地层分布图

    Figure  4.  Underlying strata map of the study area

    图  5  1920年海原地震滑坡分布与密度图

    a.滑坡分布图;b.滑坡密度图

    Figure  5.  Spatial distribution map and number density map of landslides triggered by the 1920 Haiyuan earthquake

    图  6  海原地震滑坡与高程关系统计结果

    Figure  6.  Haiyuan earthquake-triggered landslides versus elevation

    图  7  海原地震滑坡与坡度关系统计结果

    Figure  7.  Haiyuan earthquake-triggered landslides versus slope angle

    图  8  海原地震滑坡与坡向的关系统计结果

    Figure  8.  Haiyuan earthquake-triggered landslides versus slope aspect

    图  9  海原地震滑坡与坡位的关系统计结果

    Figure  9.  Haiyuan earthquake-triggered landslides versus slope position

    图  10  海原地震滑坡与地震烈度的关系统计结果

    Figure  10.  Haiyuan earthquake-triggered landslides versus seismic intensity

    图  11  海原地震滑坡与下伏地层的关系统计结果

    Figure  11.  Haiyuan earthquake-triggered landslides versus underlying strata

  • Boardman J. 2016. The value of Google EarthTM for erosion mapping[J]. Catena, 143:123-127. doi: 10.1016/j.catena.2016.03.031
    Close U, McCormick E. 1922. Where the mountains walked[J]. National Geographic Magazine, 41(5):445-464. http://ebook.lib.hku.hk/CADAL/B34873041/
    Chen X L, Ye H. 2003. Application of GIS for earthquake landslide research[J]. Earthquake Research in Shanxi, (2):17-19. http://d.old.wanfangdata.com.cn/Periodical/sxdz200302006
    Deng L S, Fan W. 2013. Deformation breakage characteristics and development mechanism of loess landslide triggered by Haiyuan M8.5 earthquake in Ningxia[J]. Journal of Catastrophology, 28(3):30-37. http://qikan.cqvip.com/article/detail.aspx?id=46436462
    Gorum T, van Westen C J, Korup O, et al. 2013. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake[J]. Geomorphology, 184:127-138. doi: 10.1016/j.geomorph.2012.11.027
    Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: Topographic position index tools[EB/OL]. www.jennessent.com.
    Li T. 1990. Landslide management in the mountain areas of China[R]. Kathmandu, Nepal: International Centre for Integrated Mountain Development Occasional.
    Li W L, Huang R Q, Pei X J, et al. 2013. Historical co-seismic landslide inventory with Google Earth:A case study of 1920 Haiyuan Earthquake, China[M]. Global View of Engineering Geology and the Environment:179-184.
    Lisle R J. 2006. Google Earth:a new geological resource[J]. Geology Today, 22(1):29-32. doi: 10.1111/gto.2006.22.issue-1
    Liu K, Ding H, Tang G A, et al. 2018. Large-scale mapping of gully-affected areas:An approach integrating Google Earth images and terrain skeleton information[J]. Geomorphology, 314:13-26. doi: 10.1016/j.geomorph.2018.04.011
    Lu Y X. 2007. Landform characteristics of seismic landslides in Xiji county, Ningxia province, and discussion on the countermeasures of landslide exploration and disaster mitigation[J]. Northwestern Seismological Journal, 29(1):79-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb200701016
    Minasny B, Padarian J, Malone B. 2015. Digital soil mapping in the cloud using Google Earth Engine[J]. Computers & Geosciences, 83:80-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0235473450
    Padarian J, Minasny B, Malone B, et al. 2015. Digital soil mapping in the clound using Google Earth Engine[J]. Computers & Geosciences, 83:80-88.
    Pei X J, Zhang X C, Guo B, et al. 2017. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology, 223:23-30. doi: 10.1016/j.enggeo.2017.03.016
    Sato H P, Harp E L. 2009. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth[J]. Landslides, 6(2):153-159. doi: 10.1007/s10346-009-0147-6
    Shan P F. 1996. Original analysis of the slide hazard-induced landforms in the Xiji region of Ningxia[J]. Acta Geographica Sinica, 51(6):535-542. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600044734
    Shen L L, Xu C, Liu L Y. 2016. Interaction among controlling factors for landslides triggered by the 2008 Wenchuan, China MW7.9 earthquake[J]. Frontiers of Earth Science, 10(2):264-273. doi: 10.1007/s11707-015-0517-4
    Tian Y Y, Xu C, Xu X W, et al. 2016. Detailed inventory mapping and spatial analyses to landslides induced by the 2013 MS6.6 Minxian earthquake of China[J]. Journal of Earth Science, 27(6):1016-1026. doi: 10.1007/s12583-016-0905-z
    Wang G H, Zhang D X, Furuya G, et al. 2006. On the mechanism for a long-travel loess landslide triggered by the 1920 Haiyuan Earthquake in China[M]. Disaster Mitigation of Debris Flows, Slope Failures and Landslides:3-12.
    Wang W N, Nakamura H, Tsuchiya S, et al. 2002. Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21, 1999[J]. Landslides-Journal of the Japan Landslide Society, 38(4):318-326. http://joi.jlc.jst.go.jp/JST.Journalarchive/jls1964/38.4_318?from=CrossRef
    Weiss A D. 2001. Topographic position and landforms analysis[EB/OL]. http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf.
    Xu C, Shyu J B H, Xu X W. 2014a. Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, MW=7.0 earthquake:visual interpretation, inventory compiling, and spatial distribution statistical analysis[J]. Natural Hazards and Earth System Sciences, 14(7):1789-1818. doi: 10.5194/nhess-14-1789-2014
    Xu C, Xu X, Yao X, et al. 2014b. Three(nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 11(3):441-461. doi: 10.1007/s10346-013-0404-6
    Xu C, Xu X W, Shyu J B H, et al. 2014c. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, MW5.9 earthquake:Inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 92:125-142. doi: 10.1016/j.jseaes.2014.06.014
    Xu C, Xu X, Shyu J B H. 2015. Database and spatial distribution of landslides triggered by the Lushan, China MW6.6 earthquake of 20 April 2013[J]. Geomorphology, 248:77-92. doi: 10.1016/j.geomorph.2015.07.002
    Xu C, Xu X, Yu G. 2013. Landslides triggered by slipping-fault-generated earthquake on a plateau:An example of the 14 April 2010, MS7.1, Yushu, China earthquake[J]. Landslides, 10(4):421-431. doi: 10.1007/s10346-012-0340-x
    Xu C. 2015. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies[J]. Geoscience Frontiers, 6(6):825-836. doi: 10.1016/j.gsf.2014.03.004
    Xu C. 2014. Overview of earthquake-triggered landslides across China mainland before the 2008 Wenchuan MW7.9 earthquake[J]. Science & Technology Review, 32(16):63-77. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB201416023.htm
    Yu L, Gong P. 2012. Google Earth as a virtual globe tool for Earth science applications at the global scale:progress and perspectives[J]. International Journal of Remote Sensing, 33(12):3966-3986. doi: 10.1080/01431161.2011.636081
    Yuan L X. 2005. The mechanism of loess landslide caused by earthquake in Haiyuan of Ningxia[D]. Xi'an: Northwest University.
    Yuan L X. 2006. Forming mechanism of the loess landslides in Xiji of Ningxia with low-angle, high speed and far-distance[J]. Journal of Disaster Prevention and Mitigation Engineering, 26(2):219-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk200602017
    Zhang D X, Wang G H. 2007. Study of the 1920 Haiyuan earthquake-induced landslides in loess(China)[J]. Engineering Geology, 94(1):76-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026196527
    Zhuang J Q, Peng J B, Xu C, et al. 2018. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China[J]. Geomorphology, 314:1-12. doi: 10.1016/j.geomorph.2018.04.012
    Zou J C, Shao S M. 1996. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 10(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600351743
    陈丙午. 1992.地震滑坡灾害的特点与减灾对策[C]//中国地震学会第4次学术大会论文摘要集.北京: 中国地震学会.
    陈晓利, 叶洪. 2003.利用GIS进行地震滑坡分析[J].山西地震(2):17-19. doi: 10.3969/j.issn.1000-6265.2003.02.006
    邓龙胜, 范文. 2013.宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J].灾害学, 28(3):30-37. doi: 10.3969/j.issn.1000-811X.2013.03.007
    国家地震局地质研究所, 宁夏回族自治区地震局. 1990.海原活动断裂带[M].北京:地震出版社.
    李原. 1994.地震洪水的次生灾害:滑坡和崩坍[J].环境, (12):30. http://www.cnki.com.cn/Article/CJFDTOTAL-HQYT199412035.htm
    卢育霞. 2007.宁夏西吉县境地震滑坡的地貌特征及其减灾开发对策探讨[J].西北地震学报, 29(1):79-83. doi: 10.3969/j.issn.1000-0844.2007.01.016
    单鹏飞. 1996.宁夏西吉地区滑坡灾害地貌的成因分析[J].地理学报, 51(6):535-542. doi: 10.3321/j.issn:0375-5444.1996.06.008
    徐锡伟, 韩竹军, 杨晓平, 等. 2016.中国及邻近地区地震构造图[M].北京:地震出版社.
    许冲. 2014.2008年汶川地震前的中国大陆地震滑坡研究[J].科技导报, 32(16):63-77. doi: 10.3981/j.issn.1000-7857.2014.16.011
    袁丽侠. 2005.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西安: 西北大学.
    袁丽侠. 2006.宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J].防灾减灾工程学报, 26(2):219-223. http://d.old.wanfangdata.com.cn/Periodical/dzxk200602017
    邹谨敞, 邵顺妹. 1996.海原地震滑坡及其分布特征探讨[J].内陆地震, 10 (1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600351743
  • 加载中
图(11)
计量
  • 文章访问数:  2501
  • HTML全文浏览量:  752
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 录用日期:  2018-07-17
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回