应用分形理论方法开展岩溶地下水水化学特征研究的可行性

李苍松 廖烟开 丁建芳

李苍松, 廖烟开, 丁建芳. 2018: 应用分形理论方法开展岩溶地下水水化学特征研究的可行性. 工程地质学报, 26(s1): 464-472. doi: 10.13544/j.cnki.jeg.2018139
引用本文: 李苍松, 廖烟开, 丁建芳. 2018: 应用分形理论方法开展岩溶地下水水化学特征研究的可行性. 工程地质学报, 26(s1): 464-472. doi: 10.13544/j.cnki.jeg.2018139
LI Cangsong, LIAO Yankai, DING Jianfang. 2018: FEASIBILITY OF RESEARCH ON CHEMICAL CHARACTERISTICS OF KARST GROUNDWATER BY USING FRACTAL THEORY. JOURNAL OF ENGINEERING GEOLOGY, 26(s1): 464-472. doi: 10.13544/j.cnki.jeg.2018139
Citation: LI Cangsong, LIAO Yankai, DING Jianfang. 2018: FEASIBILITY OF RESEARCH ON CHEMICAL CHARACTERISTICS OF KARST GROUNDWATER BY USING FRACTAL THEORY. JOURNAL OF ENGINEERING GEOLOGY, 26(s1): 464-472. doi: 10.13544/j.cnki.jeg.2018139

应用分形理论方法开展岩溶地下水水化学特征研究的可行性

doi: 10.13544/j.cnki.jeg.2018139
基金项目: 

国家自然基金面上项目-岩溶隧道地下水化学动力学及分形特征(41372337)资助

详细信息
    作者简介:

    李苍松(1971-),男,博士,教授级高级工程师,主要从事隧道工程地质、环境水文地质及工程物探技术等研究工作.Email:Li_cangsong@126.com

  • 中图分类号: P642

FEASIBILITY OF RESEARCH ON CHEMICAL CHARACTERISTICS OF KARST GROUNDWATER BY USING FRACTAL THEORY

  • 摘要: 岩溶及地下水的准确预报或探测是一个亟待解决的难题,开展岩溶及地下水作用机理研究对该问题的解决具有重要意义。深入开展岩溶地下水的水化学特征研究有助于更好地认识岩溶地下水径流循环条件和地质环境。本论文基于岩溶地下水的水文地球化学简化模型,开展典型地区岩溶隧道地下水化学成分的变化规律分析及岩溶地下水的水化学动力学参数研究。在此基础上,借用分析化学中的络合反应理论,将常规水化学成分的离子进行配对,改变观察尺度,探索各离子对的占比关系,以离子对累计百分含量变化为研究指标,论证水化学成分变化的自相似性和标度不变性,从而提出应用分形理论方法开展岩溶地下水化学特征研究的可行性。
  • Cao Y Q,Hu K R. 1994. Karst hydrogeological chemistry environment[M]. Changchun:Jilin University Press.
    Cao Y Q,Hu K R,Hu Z Y. 2000. Hydrogeochemical reactions-migration-differentiation model[J]. Journal of Changchun University of Science and Technology,(3):251-256.
    Chen Q. 2005. Study on engineering geological system of karst gas long tunnel[D]. Chengdu:Southwest Jiaotong University.
    Fu S Y. 2008. Simulation system and key technology research on high head seepage field of deep buried diversion tunnel[D]. Beijing:Tsinghua University.
    He F L,Li C S,Chen C Z. 2001. Forecasting and forecasting technology of water inrush disaster in long tunnel in karst area[J]. Hydrogelolgy Engineering Geology,(5):21-23.
    Huang H J,Zhang M Q. 2009. Analysis and response of karst and karst water in Yi-Wan railway tunnel project[J]. Modern Tunnel Technology,(2):22-34.
    Hu Z X,Shen J F. 1994. Fractal characteristics and mechanism of karst morphological system[J]. Geoscience-Journal of China University of Geosciences, 19 (1):103-108.
    Jiang G Y. 2012. Study on the safety risk assessment model of karst water inrush in deep buried tunnel[J]. Journal of Underground Space and Engineering,(2):274-279.
    Li C S,He F L,Chen C Z. 2005. A new method for calculating karst water inflow in wulong tunnel of yuhuai railway[J]. China Railway Science. 26 (5):41-46.
    Li C S,Gao B,Mei Z R. 2007. Basic research on fractal theory application of karst geological prediction.[J]. Journal of Southwest Jiaotong University, 42 (5):542-547.
    Li C S,Gao B. Mei Z R. 2007. Advanced prediction technology of karst groundwater[M]. Chengdu:Southewest Jiaotong University Press.
    Li C S,Ding J F,Liao Y K. 2017. Chenical dynamics and fractal characteristics of groundwater in karst tunnel[M]. Beijing:Science Press.
    Li L Q,Liu S,Li S C. 2017. Stress and seepage coupling triaxial permeability test system development and its application in the filling medium permeability characteristics test[J]. Rock and Soil Mechanics, 38 (4):3053-3061.
    Liu F S,Xu G U,Huang W T. 2012. Analysis of groundwater seepage and reinforcement parameters of shanling tunnel[J]. Journal of South China University of Technology(Nature Science Edition), 40 (2):112-117.
    Liu Q B. 2011. Study on groundwater seepage model of tunnel[D]. Tianjin:Tianjin University.
    Li W X. 1994. Mathematical description and fractal calculation of karst pipe(cave) morphological space[J]. Chinese Karst, 19 (1):103-108.
    Liu Z C. 2015. Study on interaction mechanism and control technology between fractured rock tunnel and groundwater environment[D]. Beijing:Beijing Jiaotong University.
    Mandel B,Wen Z Y,Su H. 1999. Fractal objects:form, opportunity and dimension[M]. Beijing:World Book Publishing Corporation.
    Peng Y W,Liang B. 2005. Experimental study on rock damage caused by hydrochemical action[C]//New Theory of Mining Engineering-Beijing Institute of Mining and Mining Graduate Essays. Beijing:[s.n.].
    Tang L S,Zhang P C,Wang S J. 2002. Experimental study on macroscopic mechanical effects of rocks subjected to hydro-rock chemistry[J]. Journal of Rock Mechanics and Engineering, 21 (4):526-531.
    Wang Y,Chen Q. 2004. Interaction mechanism of deep-buried tunnel water-rock in karst development zone[J]. China Railway Science, 25 (4):55-58.
    Wang D C,Zhang R Q,Shi Y H. 1995. Foundation of hydrogeology[M]. Beijing:Geological Publiching House.
    Zhang M,Zhang M Q,Huang H J. 2011. Research on construction technology of xiangshan tunnel in Longxia railway[J]. Journal of Railway Engineering, (9):75-82.
    Zi Y,Ma S W. 2011. Occurrence mechanism and engineering preventiong and control of water inrush disaster in karst tunnel[J]. Journal of Railway Engineering,(2):84-89.
    曹玉清,胡宽瑢. 1994. 岩溶化学环境水文地质[M]. 长春:吉林大学出版社.
    曹玉清,胡宽瑢,胡忠毅. 2000. 水文地球化学反应-迁移-分异模型[J]. 长春科技大学学报,(3):251-256.
    陈强. 2005. 岩溶储气长隧道工程地质系统研究[D]. 成都:西南交通大学.
    付圣尧. 2008. 深埋引水隧洞高水头渗流场模拟系统及关键技术研究[D]. 北京:清华大学.
    何发亮,李苍松,陈成宗. 2001. 岩溶地区长大隧道涌水灾害预测预报技术[J]. 水文地质工程地质,(5):21-23.
    黄鸿健,张民庆. 2009. 宜万铁路隧道工程岩溶及岩溶水分析与应对[J]. 现代隧道技术,(2):22-34.
    胡章喜,沈继方. 1994. 岩溶形态系统的分形特征及其机理探讨[J]. 地球科学-中国地质大学学报, 19 (1):103-108.
    蒋国云. 2012. 深埋隧道岩溶突水安全风险评价模型研究[J]. 地下空间与工程学报,(2):274-279.
    李苍松,何发亮,陈成宗. 2005. 渝怀线武隆隧道岩溶涌水量计算新方法[J]. 中国铁道科学, 26 (5):41-46.
    李苍松,高波,梅志荣. 2007. 岩溶地质预报的分形理论应用基础研究[J]. 西南交通大学学报, 42 (5):542-547.
    李苍松,高波,梅志荣. 2013. 岩溶地下水超前预报技术[M]. 成都:西南交通大学出版社.
    李苍松,丁建芳,廖烟开. 2017. 岩溶隧道地下水化学动力学及分形特征[M]. 北京:科学出版社.
    李利平,柳尚,李术才等. 2017. 应力-渗流耦合三轴渗透试验系统研制及其在充填介质渗透特性试验中的应用[J]. 岩土力学, 38 (4):3053-3061.
    刘福胜,徐国元,黄文通. 2012. 山岭隧道地下水渗流及加固参数的解析研究[J]. 华南理工大学学报(自然科学版), 40 (2):112-117.
    刘擎波. 2011. 隧道地下水渗流模型研究[D]. 天津:天津大学.
    李文兴. 1997. 岩溶管道(洞穴)形态空间的数学描述及分形计算研究[J]. 中国岩溶, 16 (2):113-119.
    刘志春. 2015. 裂隙岩体隧道与地下水环境相互作用机理及控制技术研究[D]. 北京:北京交通大学.
    曼德尔布洛特 B. 1999. 分形对象:形、机遇和维数[M]. 文志英、苏虹译. 北京:世界图书出版公司.
    彭永伟,梁冰. 2005. 水化学作用对岩石损伤的实验研究[C]//采矿工程学新论-北京开采所研究生论文集. 北京:出版者不详.
    汤连生,张鹏程,王思敬. 2002. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 21 (4):526-531.
    王鹰,陈强. 2004. 岩溶发育区深埋隧道水岩相互作用机理[J]. 中国铁道科学, 25 (4):55-58.
    王大纯,张人权,史毅虹. 1995. 水文地质学基础[M]. 北京:地质出版社.
    张梅、张民庆、黄鸿健、孙国庆. 2011. 龙厦铁路象山隧道岩溶区段施工技术研究[J]. 铁道工程学报, 75-82.
    资谊,马士伟. 2011. 岩溶隧道涌突水灾害发生机理与工程防治[J]. 铁道工程学报,(2):84-89.
  • 加载中
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  240
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-10-31

目录

    /

    返回文章
    返回