水致黄土深层滑坡灾变机理

李同录 习羽 侯晓坤

李同录, 习羽, 侯晓坤. 2018: 水致黄土深层滑坡灾变机理. 工程地质学报, 26(5): 1113-1120. doi: 10.13544/j.cnki.jeg.2018176
引用本文: 李同录, 习羽, 侯晓坤. 2018: 水致黄土深层滑坡灾变机理. 工程地质学报, 26(5): 1113-1120. doi: 10.13544/j.cnki.jeg.2018176
LI Tonglu, XI Yu, HOU Xiaokun. 2018: MECHANISM OF SURFACE WATER INFILTRATION INDUCED DEEP LOESS LANDSLIDE. JOURNAL OF ENGINEERING GEOLOGY, 26(5): 1113-1120. doi: 10.13544/j.cnki.jeg.2018176
Citation: LI Tonglu, XI Yu, HOU Xiaokun. 2018: MECHANISM OF SURFACE WATER INFILTRATION INDUCED DEEP LOESS LANDSLIDE. JOURNAL OF ENGINEERING GEOLOGY, 26(5): 1113-1120. doi: 10.13544/j.cnki.jeg.2018176

水致黄土深层滑坡灾变机理

doi: 10.13544/j.cnki.jeg.2018176
基金项目: 

国家重点基础研究发展计划 2014CB744701

国家自然科学基金项目 41772278

国家自然科学基金项目 41502286

中央高校基金 310826172001

中央高校基金 310826175717

详细信息
    作者简介:

    李同录(1965-), 男, 博士, 教授, 博士生导师, 主要从事黄土工程地质研究.Email:dcdgx08@chd.edu.cn

  • 中图分类号: P642

MECHANISM OF SURFACE WATER INFILTRATION INDUCED DEEP LOESS LANDSLIDE

  • 摘要: 在黄土地区,雨后观测和人工降雨试验均表明地表水在黄土中的入渗深度有限,并不影响黄土深部的含水率。因此水分入渗是否直接造成斜坡深层滑移颇受争议。本文通过黄土地区自然降雨条件下的现场观测,发现地表水在黄土中的入渗沿垂直剖面可以划分为3个带:即活动带,稳定带和饱和带。活动带受大气降雨和蒸发的影响,为瞬态流,向下则转化为稳定流;稳定带含水率不变,但仍有稳定的水分运移至地下水位。地下水以下降泉的形式排泄。在入渗和排泄条件长期不变的情况下,地下水位可维持动态平衡。若地表入渗量加大,如灌溉或管道漏水等,稳定带含水率升高,并伴随地下水位抬升,以达到新的平衡,此水文动态转化过程会诱发滑坡。以延炼滑坡为例,分析了长期地表水间歇性滴渗条件下,边坡的水力动态变化过程,及其对边坡稳定性的影响。观测及分析结果表明,黄土深层滑坡主要与地表水入渗导致的地下水位抬升有关,由于其过程缓慢,容易被忽视而致灾。
  • 图  1  场地监测设备布置

    Figure  1.  Location of the site monitoring probes

    图  2  降雨量、气温、气压和2 m以上水分监测和模拟结果

    Figure  2.  The monitoring results of precipitation, air temperature and air pressure as well as the monitoring and simulating soil water content above 2 m depth

    图  3  2 m以下土体水分监测和模拟结果及地下水位监测结果

    Figure  3.  The soil water contents of monitoring and simulating below 2 m and the underground water level of monitoring

    图  4  黄土和古土壤的SWCC

    Figure  4.  SWCCs of loess and paleosol

    图  5  黄土和古土壤的HCF

    Figure  5.  HCF of loess and paleosol

    图  6  监测含水率与模拟含水率沿剖面的变化范围及分带

    Figure  6.  Variation span of monitoring and simulating soil water content on the profile and zonation

    图  7  延炼滑坡

    Figure  7.  View of the Yanlian landslide

    图  8  延炼滑坡主剖面有限元模型

    Figure  8.  The FEM model for the main profile of Yanlian landslide

    图  9  主剖面地表水入渗模拟结果

    Figure  9.  Simulation results of water seepage on the profile

    图  10  边坡稳定系数随水入渗时间的变化

    Figure  10.  Variation of the safety factors with the surface water infiltration duration

    表  1  模型主要参数

    Table  1.   Parameters used in the numerical modeling studies

    地层 SWCC ks/m·d-1
    Q3 a=9.7,m=1.808,n=1.0 0.110
    Q2 a=29.7,m=0.922,n=2.4 0.044
    Q1 a=8718,m=0.825,n=96.5 0.027
    下载: 导出CSV
  • Childs E C, Collis-George N. 1950. The permeability of porous materials[C]//Proceedings of the Royal society. London: [s.n.]: 392-405.
    Ding Y. 2011. Study on the stability of high loess slope under artificial rainfall simulation[D]. Xi'an: Northwest University.
    Dong Y, Sun P P, Zhang M S, et al. 2013. The response of regional groundwater system to irrigation at Heifangtai terrace, Gansu Province[J]. Geological Bulletin of China, 32(6):868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201306007
    Feda J. 1988. Collapse of loess upon wetting[J]. Engineering Geology, 25(2-4):263-269. doi: 10.1016/0013-7952(88)90031-2
    Fredlund D G, Rahardjo H. 1993. Soil mechanics for unsaturated soils[M]. New York, USA:Wiley.
    Garakani A A, Haeri S M, Khosravi A, et al. 2015. Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions[J]. Engineering Geology, 195(9):28-41. http://cn.bing.com/academic/profile?id=a0a1f5146d1f725f8e41966347023635&encoded=0&v=paper_preview&mkt=zh-cn
    Hou X K, Vanapalli S K, Li T L. 2018. Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in heifangtai, loess highland, China[J]. Engineering Geology, 234:27-37. doi: 10.1016/j.enggeo.2017.12.020
    Jin Y L, Dai F C. 2007. Analysis of loess slope stability due to ground water rise[J]. Journal of Engineering Geology, 15(5):599-606. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200705004.htm
    Lei X Y. 1994. The hazards of loess landslides in the southern tableland of Jingyang county, Shaanxi and their relationship with the channel water into fields[J]. Journal of Engineering Geology, 3(1):56-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500091730
    Li A G, Yue Z Q, Tham L G, et al. 2005. Field-monitored variations of soil moisture and matric suction in a saprolite slope[J]. Canadian Geotechnical Journal, 42(1):13-26. doi: 10.1139/t04-069
    Li J, Gao G Y, Huang X F. 2011. Experimental research on immersion for unsaturated intact loess slope[J]. Chinese Journal of Rock Mechanics and Engineering, 30(5):1043-1048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201105022
    Li P, Li T L, Vanapalli S K. 2016. Influence of environmental factors on the wetting front depth:a case study in the Loess Plateau[J]. Engineering Geology, 214:1-10. doi: 10.1016/j.enggeo.2016.09.008
    Lin R F, Wei K Q. 2006. Tritium profiles of pore water in the Chinese loess unsaturated zone:implications for estimation of groundwater recharge[J]. Journal of Hydrology, 328(1-2):192-199. doi: 10.1016/j.jhydrol.2005.12.010
    Lin X Y, Li T L, Zhang Z R, et al. 2013. Causes of Gaoloucun loess flowslide in Huaxian county, Shaanxi province[J]. Journal of Engineering Geology, 21(2):282-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201302014
    Qi X, Xu Q, Li B, et al. 2016. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology, 24(3):418-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201603011
    Richards L A. 1931. Capillary conduction of liquids through porous mediums[J]. Physics, 1(5):318-333. doi: 10.1063/1.1745010
    Shen W, Zhai Z H, Li T L, et al. 2016. Simulation of propagation process for the Dabaozi rapid long run out loess landslide in the south bank of the Jinghe River, Shaanxi province[J]. Journal of Engineering Geology, 24(6):1309-1317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201606038
    Tu X B, Kwong A K L, Dai F C, et al. 2009. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 105(1-2):134-150. doi: 10.1016/j.enggeo.2008.11.011
    Van Genuchten M T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of American Journal, 44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    Wang H, Li T L, Fu Y K. 2014. Determining permeability function of unsaturated loess by using instantaneous profile method[J]. Journal of Hydraulic Engineering, 45(8):997-1003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201408014
    Wen B P, Yan Y J. 2014. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China[J]. Engineering Geology, 168:46-58. doi: 10.1016/j.enggeo.2013.10.023
    Xi Y, Li T L, Li P, et al. 2017. Mechanism of an unsaturated loess landslide induced by dropping of condensed water vapor[J]. Hydrogeology & Engineering Geology, 44(4):145-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201704022
    Xing X L. 2013. The mechanism of irrigation-induced flow-slide and its motion simulation-taking Gaolou village landslide as the research object[D]. Xi'an: Chang'an University.
    Zhang C L, Li P, Li T L. 2014. In-situ observation on rainfall infiltration in loess[J]. Journal of Hydraulic Engineering, 45(6):728-734. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201704035
    Zhang M S, Li T L. 2011. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 19(4):530-540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201104014
    丁勇. 2011.人工降雨模拟作用下的黄土高边坡稳定性研究[D].西安: 西北大学.
    董英, 孙萍萍, 张茂省, 等. 2013.诱发滑坡的地下水流系统响应历史与趋势——以甘肃黑方台灌区为例[J].地质通报, 32(6):868-874. doi: 10.3969/j.issn.1671-2552.2013.06.007
    金艳丽, 戴福初. 2007.地下水位上升下黄土斜坡稳定性分析[J].工程地质学报, 15(5):599-606. doi: 10.3969/j.issn.1004-9665.2007.05.004
    雷祥义. 1994.陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J].工程地质学报, 3(1):56-64. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ501.006.htm
    李佳, 高广运, 黄雪峰. 2011.非饱和原状黄土边坡浸水试验研究[J].岩石力学与工程学报, 30(5):1043-1048. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201105022
    蔺晓燕, 李同录, 张子然, 等. 2013.陕西华县高楼村黄土滑坡-泥流的成因分析[J].工程地质学报, 21(2):282-288. doi: 10.3969/j.issn.1004-9665.2013.02.014
    亓星, 许强, 李斌, 等. 2016.甘肃黑方台黄土滑坡地表水入渗机制初步研究[J].工程地质学报, 24(3):418-424. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201603011
    沈伟, 翟张辉, 李同录, 等. 2016.陕西泾河南岸大堡子高速远程黄土滑坡运动过程模拟[J].工程地质学报, 24(6):1309-1317. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201606038
    王红, 李同录, 付昱凯. 2014.利用瞬态剖面法测定非饱和黄土的渗透性曲线[J].水利学报, 45(8):997-1003. http://d.old.wanfangdata.com.cn/Periodical/slxb201408014
    习羽, 李同录, 李萍, 等. 2017.蒸汽凝水滴渗诱发的一个非饱和黄土滑坡机理研究[J].水文地质工程地质, 44(4):145-152. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201704022
    邢鲜丽. 2013.灌溉诱发的黄土滑坡-泥流形成机理及运动学模拟——以陕西华县高楼村滑坡为例[D].西安: 长安大学.
    张常亮, 李萍, 李同录, 等. 2014.黄土中降雨入渗规律的现场监测研究[J].水利学报, 45(6):728-734. http://d.old.wanfangdata.com.cn/Periodical/slxb201406012
    张茂省, 李同录. 2011.黄土滑坡诱发因素及其形成机理研究[J].工程地质学, 19 (4):530-540. doi: 10.3969/j.issn.1004-9665.2011.04.014
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2302
  • HTML全文浏览量:  547
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-01
  • 录用日期:  2018-07-18
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回