落石冲击荷载作用下的桩板拦石墙结构动力响应

胡卸文 梅雪峰 杨瀛 罗刚 吴建利

胡卸文, 梅雪峰, 杨瀛, 罗刚, 吴建利. 2019: 落石冲击荷载作用下的桩板拦石墙结构动力响应. 工程地质学报, 27(1): 123-133. doi: 10.13544/j.cnki.jeg.2019-004
引用本文: 胡卸文, 梅雪峰, 杨瀛, 罗刚, 吴建利. 2019: 落石冲击荷载作用下的桩板拦石墙结构动力响应. 工程地质学报, 27(1): 123-133. doi: 10.13544/j.cnki.jeg.2019-004
HU Xiewen, MEI Xuefeng, YANG Ying, LUO Gang, WU Jianli. 2019: DYNAMIC RESPONSE OF PILE-PLATE ROCK RETAINING WALL UNDER IMPACT OF ROCKFALL. JOURNAL OF ENGINEERING GEOLOGY, 27(1): 123-133. doi: 10.13544/j.cnki.jeg.2019-004
Citation: HU Xiewen, MEI Xuefeng, YANG Ying, LUO Gang, WU Jianli. 2019: DYNAMIC RESPONSE OF PILE-PLATE ROCK RETAINING WALL UNDER IMPACT OF ROCKFALL. JOURNAL OF ENGINEERING GEOLOGY, 27(1): 123-133. doi: 10.13544/j.cnki.jeg.2019-004

落石冲击荷载作用下的桩板拦石墙结构动力响应

doi: 10.13544/j.cnki.jeg.2019-004
基金项目: 

国家自然科学基金 41672283

国家自然科学基金 41731285

四川省自然资源厅“8.8”九寨沟地震灾区生态化地质灾害防治重大科技支撑研究课题 KJ-2018-20

详细信息
    作者简介:

    胡卸文(1963-), 男, 博士, 教授, 博士生导师, 研究方向为工程地质、环境地质.Email:huxiewen@163.com

    通讯作者:

    梅雪峰(1987-), 男, 博士生, 研究方向为岩土体冲击动力学.Email:xfmei@my.swjtu.edu.cn

  • 中图分类号: P642.21

DYNAMIC RESPONSE OF PILE-PLATE ROCK RETAINING WALL UNDER IMPACT OF ROCKFALL

Funds: 

the National Natural Science Foundation of China 41672283

the National Natural Science Foundation of China 41731285

Major Scientific and Technological Support Research Subject for the Prevention and Control of Ecological Geological Disasters in "8.8"Jiuzhaigou Earthquake Stricken Area of Department of Natural Resources of Sichuan Province KJ-2018-20

  • 摘要: 桩板拦石墙是针对2008年"5·12"汶川震区高陡斜坡带高位落石灾害难以实施主动加固,而在拟设拦挡部位所采用的一种被动防护措施,适用地形坡度介于25°~35°。为研究此类桩板结构在落石冲击荷载下的动力响应,采用有限元与无限元耦合进行数值模拟,结合经典弹塑性理论,系统分析了桩板拦石墙在不同冲击工况下弹塑性加载与卸荷回弹过程中冲击力、贯入深度、结构耗能效果等特征参量,明确了结构的抗冲击特性。结果表明,本文采用的"无限元"边界可以有效地减小应力波在人工截断边界处反射造成的误差。在冲击速度为10 m·s-1、15 m·s-1、20 m·s-1、25 m·s-1的情况下,本文计算冲击力的大小分别为1.9 MN、2.5 MN、3.1 MN、3.7 MN,结果与Kawahara模型一致,但较Labiouse模型和Hertz弹性解大。根据混凝土损伤理论,提出了损伤等级分类,有效地量化结构破损程度。当速度大于20 m·s-1时,桩、板混凝土拉压损伤严重,结构存在丧失承载力的风险。本文的计算方法与结果可为相关结构设计提供实际指导。
  • 图  1  孔玉镇高位崩塌桩板拦石墙

    Figure  1.  Pile-plate rock retaining wall in Kongyu Town

    图  2  孔玉镇典型危岩与保护对象剖面

    Figure  2.  Sectional view of typical perilous rock and protected object in Kongyu Town

    图  3  桩板拦石墙模型图

    Figure  3.  FEM model of structure

    图  4  结构侧立面图

    Figure  4.  Structure side elevation

    图  5  混凝土板及配筋

    Figure  5.  Reinforcement of slab

    图  6  三维单向映射无限元

    a. C3D8R单元;b. CIN3D8无限元

    Figure  6.  Three-dimensional mapping infinite element

    图  7  混凝土受压损伤因子

    Figure  7.  Concrete compression damage factor

    图  8  混凝土受拉损伤因子

    Figure  8.  Concrete tensile damage factor

    图  9  典型土工格栅本构(Dong,2011)

    Figure  9.  Typical geogrid constitutive(Dong, 2011)

    图  10  系统能量历程曲线

    Figure  10.  Duration curves of system energy

    图  11  不同冲击速度下冲击力时程曲线

    Figure  11.  Duration curves of impact force at different speeds

    图  12  不同冲击角度下冲击力时程曲线

    Figure  12.  Duration curves of impact force at different angles

    图  13  冲击角度与峰值冲击力关系

    Figure  13.  Relationship between impact angle and impact force

    图  14  冲击力与冲击速度关系

    Figure  14.  Relationship between impact speed and impact force

    图  15  不同冲击角度下冲击深度时程曲线

    Figure  15.  Duration curves of depth at different impact angles

    图  16  不同冲击速度下加载-卸载曲线

    Figure  16.  Load-unload curves at different impact speeds

    图  17  冲击角度与最大冲击深度关系

    Figure  17.  Relationship between impact angle and maximum depth

    图  18  最大冲击深度随速度变化曲线

    Figure  18.  Variation curves of maximum depth with speeds

    图  19  质心运动轨迹曲线

    Figure  19.  Motion tracks of centroid

    图  20  不同部件吸收能量曲线

    Figure  20.  Absorption energy curve of different components

    图  21  20 m·s-1冲击速度下板损伤情况

    Figure  21.  Plate damage at the impact speed of 20 m·s-1

    图  22  20 m·s-1冲击速度下桩损伤情况

    Figure  22.  Pile damage at the impact speed of 20 m·s-1

    图  23  不同冲击速度下板损伤情况

    Figure  23.  Plate damage at the impact speed of 20 m·s-1

    图  24  不同冲击速度下桩损伤情况

    Figure  24.  Pile damage at different impact speeds

    表  1  钢筋材料参数(林峰等,2008)

    Table  1.   Parameters of reinforcement material(Lin et al., 2008)

    型号 密度/kg·m-3 弹性模量/MPa 泊松比 屈服强度/MPa 极限强度/MPa 极限拉应变
    HRB400 7800 2.0×105 0.27 503 662 0.130
    HRB335 7800 2.0×105 0.27 461 691 0.118
    下载: 导出CSV

    表  2  混凝土及缓冲层土体材料参数(周珉等,2017)

    Table  2.   Parameters of concrete and cushion soil material(Zhou et al., 2017)

    材料类型 密度/kg·m-3 弹性模量/MPa 泊松比 剪胀角/(°) 偏心率 fb0/fco K 黏性参数
    C30混凝土 2500 30 000 0.20 38 0.1 1.16 0.666 67 0.000 01
    缓冲层土体 1800 35 0.28 摩擦角/(°) K 剪胀角/(°)
    39.1 1 0
    下载: 导出CSV

    表  3  土工格栅材料参数

    Table  3.   Parameters of geogrid material

    密度/kg·m-3 间距/mm 肋条宽厚/mm 截面积/mm2 惯性矩/mm4 弹性模量/MPa 屈服强度/MPa 泊松比
    910 80×80 3.2×1.3 4.16 0.58 3500 400 0.2
    下载: 导出CSV
  • Chau K T, Wong R H C, Wu J J. 2002. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics & Mining Sciences, 39(1):69-77. http://www.sciencedirect.com/science/article/pii/S1365160902000163
    Dong Y L, Han J, Bai X H. 2011. Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures[J]. Geotextiles & Geomembranes, 29(2):83-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70580298dff6ead8db25a7307f9f4d7e
    Han Z H, Chen X, Wang X L, et al. 2017. Risk assessment for Luojiaqingginggangling rockfall[J]. Journal of Engineering Geology, 25(2):520-530.
    Johnson K L. 1992. Contact Mechanics[M]. Beijing:Higher Education Press:386-424.
    Jr J F S, Bishop M P. 1998. Mass movement in the Himalaya:new insights and research directions[J]. Geomorphology, 26(1-3):13-35. doi: 10.1016/S0169-555X(98)00049-X
    Kawahara S, Muro T. 2006. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics, 43(3):329-340. doi: 10.1016/j.jterra.2005.05.009
    Kojan E, Hutchinson J N. 1978. Mayunmarca rockslide and debris flow, Peru[J]. Developments in Geotechnical Engineering, 14:315-361. doi: 10.1016/B978-0-444-41507-3.50017-9
    Labiouse V, Descoeudres F, Montani S. 1966. Experimental Study of Rock Sheds Impacted by rock Blocks[J]. Structural Engineering International, 6(3):171-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2749/101686696780495536
    Li M, Li H N. 2011. Investigation into dynamic properties of damaged plasticity model for concrete in ABAQUS[J]. Journal of Disaster Prevention and Mitigation Engineering, 31(3):299-303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201103011
    Lin F, Gu X L, Kuang X X, et al. 2008. Constitutive models for reinforcing steel bars under high strain rates[J]. Journal of Building Materials, 11(1):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzclxb200801003
    Mougin J P, Perrotin P, Mommessin M, et al. 2005. Rock fall impact on reinforced concrete slab:an experimental approach[J]. International Journal of Impact Engineering, 31(2):169-183. doi: 10.1016/j.ijimpeng.2003.11.005
    Muraishi H, Samizo M, Sugiyama T. 2005. Development of a flexible low-energy rockfall protection fence[J]. Quarterly Report of RTRI, 46(3):161-166. doi: 10.2219/rtriqr.46.161
    Paronuzzi P. 2009. Field evidence and kinematical back-analysis of block rebounds:the lavone rockfall, Northern Italy[J]. Rock Mechanics & Rock Engineering, 42(5):783-813. doi: 10.1007/s00603-008-0021-1
    Peila D, Oggeri C, Castiglia C. 2007. Ground reinforced embankments for rockfall protection:design and evaluation of full scale tests[J]. Landslides, 4(3):255-265. doi: 10.1007/s10346-007-0081-4
    Pichler B, Hellmich C, Mang H A, et al. 2006. Loading of a gravel-buried steel pipe subjected to rockfall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(11):1465-1473. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1465)
    Procter E, Strapazzon G, Balkenhol K, et al. 2015. Search and rescue response to a large-scale rockfall disaster[J]. Wilderness & Environmental Medicine, 26(1):68-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7545a4bf0c2df6ee4bd9734d57c3d6ef
    Qi Y L, Hisanori O. 2014. Study of ABAQUS dynamic infinite element artificial boundary[J]. Rock and Soil Mechanics, 35(10):3007-3013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201410035
    Ritchie A M. 1963. Evaluation of rockfall and its control[J]. Highway Research Record, 17(4):291-304.
    Ronco C, Oggeri C, Peila D. 2009. Design of reinforced ground embankments used for rockfall protection[J]. Natural Hazards & Earth System Sciences, 9(4):1189-1199. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5b99d3dc254e8b77c671462ebe87d85a
    The National Standards Compilation Group of People's Republic of China. 2010. Code for design of concrete structures(GB50010-2002)[S].Beijing: China Architecture and Building Press.
    Thornton C. 1997. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 64(2):383-386. doi: 10.1115/1.2787319
    Wang D P, Liu Y, Pei X J, et al. 2016. Elasto-plastic dynamic responses of reinforced concrete slabs under rockfall impact[J]. Journal of Southwest Jiaotong University, 51(6):1147-1153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201606014
    Wang S, Zhou X J, Jiang B, et al. 2016. Numerical analysis of dynamic response and impact resistance of a large-span rock shed in a tunnel under rockfall impact.[J]. Explosion and Shock Waves, 36(4):548-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201604016
    Wang X L, Liu H Y, Wang R Q, et al. 2018. The approach of rock collapse(rockfall) identification and prediction for power transmission and transformation project in mountain area[J]. Journal of Engineering Geology, 26(1):172-178. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201801020
    Wang Z Q, Yu Z W. 2004. Concrete damage model based on energy loss[J]. Journal of Building Materials, 7(4):365-369. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201709017
    Yamagishi H. 2000. Recent landslides in western hokkaido, japan[J]. Pure & Applied Geophysics, 157(6-8):1115-1134. doi: 10.1007-s000240050020/
    Zhang G C, Tang H M, Xiang X, et al. 2015. Theoretical study of rockfall impacts based on logistic curve[J]. International Journal of Rock Mechanics & Mining Sciences, 78:133-143. http://www.sciencedirect.com/science/article/pii/S1365160915001513
    Zhang L Q, Yang Z F, Zhang Y J. 2005. Risk analysis of encountering rockfalls on highway and method study[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (S2):5543-5548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502018119
    Zhang Q L, Wang Q C, Wu Q, et al. 2015. Anti-impact performances of different kinds of shed-tunnel structures[J]. Journal of Vibration and Shock, 34(3):72-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201503013
    Zhou M, Huang Z M, Gao Y, et al. 2017. Column-web combined model for steel-reinforcedconcreteshear wall[J]. Journal of Building Structures, 38(11):55-63. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZJB201711007.htm
    Zhu J W. 2018. Geological hazard modes and integrated environmental management of highly incised slopes in Jixian mines illustrated with example of northern Daxingyu mine, Jixian[J]. Journal of Engineering Geology, 26(2):348-355. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201802010
    Zineddin M. 2008. Simulation of Reinforced Concrete Slab Behavior under Impact Loading[C]//Architectural Engineering Conference: 1-9.
    韩振华, 陈鑫, 王学良, 等. 2017.四川罗家青杠岭崩塌风险的定量评价研究[J].工程地质学报, 25(2):520-530. http://www.gcdz.org/CN/abstract/abstract12379.shtml
    Johnson K L. 1992.接触力学[M].北京:高等教育出版社:386-424.
    李敏, 李宏男. 2011. ABAQUS混凝土损伤塑性模型的动力性能分析[J].防灾减灾工程学报, 31(3):299-303. http://d.old.wanfangdata.com.cn/Periodical/dzxk201103011
    林峰, 顾祥林, 匡昕昕, 等. 2008.高应变率下建筑钢筋的本构模型[J].建筑材料学报, 11(1):14-20. doi: 10.3969/j.issn.1007-9629.2008.01.003
    戚玉亮, 大塚久哲. 2014. ABAQUS动力无限元人工边界研究[J].岩土力学, 35(10):3007-3012. http://d.old.wanfangdata.com.cn/Periodical/ytlx201410035
    王东坡, 刘洋, 裴向军, 等. 2016.滚石冲击钢筋混凝土板的弹塑性动力响应研究[J].西南交通大学学报, 51(6):1147-1153. doi: 10.3969/j.issn.0258-2724.2016.06.014
    王爽, 周晓军, 姜波, 等. 2016.落石冲击下隧道大跨度棚洞的动力响应数值分析与抗冲击研究[J].爆炸与冲击, 36(4):548-556. http://d.old.wanfangdata.com.cn/Periodical/bzycj201604016
    王学良, 刘海洋, 王瑞琪, 等. 2018.山区输变电工程崩塌(滚石)灾害识别与预测方法[J].工程地质学报, 26(1):172-178. http://www.gcdz.org/CN/abstract/abstract12646.shtml
    王中强, 余志武. 2004.基于能量损失的混凝土损伤模型[J].建筑材料学报, 7(4):365-369. doi: 10.3969/j.issn.1007-9629.2004.04.001
    张路青, 杨志法, 张英俊. 2005.公路沿线遭遇滚石的风险分析——方法研究[J].岩石力学与工程学报, 24 (S2):5543-5548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502018119
    张群利, 王全才, 吴清, 等. 2015.不同结构类型棚洞的抗冲击性能研究[J].振动与冲击, 34(3):72-76. http://d.old.wanfangdata.com.cn/Periodical/zdycj201503013
    中华人民共和国国家标准编写组. 2002.混凝土结构设计规范(GB50010-2002)[S].北京: 中国建筑工业出版社.
    周珉, 黄宗明, 高永, 等. 2017.型钢混凝土剪力墙边框柱-腹板组合分析模型研究[J].建筑结构学报, 38(11):55-63. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201711007
    祝介旺. 2018.蓟县矿山高切坡地质灾害致灾模式及环境综合治理研究——以蓟县大兴峪北矿区高切坡为例[J].工程地质学报, 26 (2):348-355. http://www.gcdz.org/CN/abstract/abstract12665.shtml
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  7653
  • HTML全文浏览量:  698
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 录用日期:  2018-12-26
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回