DYNAMIC RESPONSE OF PILE-PLATE ROCK RETAINING WALL UNDER IMPACT OF ROCKFALL
-
摘要: 桩板拦石墙是针对2008年"5·12"汶川震区高陡斜坡带高位落石灾害难以实施主动加固,而在拟设拦挡部位所采用的一种被动防护措施,适用地形坡度介于25°~35°。为研究此类桩板结构在落石冲击荷载下的动力响应,采用有限元与无限元耦合进行数值模拟,结合经典弹塑性理论,系统分析了桩板拦石墙在不同冲击工况下弹塑性加载与卸荷回弹过程中冲击力、贯入深度、结构耗能效果等特征参量,明确了结构的抗冲击特性。结果表明,本文采用的"无限元"边界可以有效地减小应力波在人工截断边界处反射造成的误差。在冲击速度为10 m·s-1、15 m·s-1、20 m·s-1、25 m·s-1的情况下,本文计算冲击力的大小分别为1.9 MN、2.5 MN、3.1 MN、3.7 MN,结果与Kawahara模型一致,但较Labiouse模型和Hertz弹性解大。根据混凝土损伤理论,提出了损伤等级分类,有效地量化结构破损程度。当速度大于20 m·s-1时,桩、板混凝土拉压损伤严重,结构存在丧失承载力的风险。本文的计算方法与结果可为相关结构设计提供实际指导。Abstract: In view of the difficulty in implementing active reinforcement for the high-level rockfall disaster occurred in the high-steep slope zone of the "5·12" Wenchuan earthquake area in 2008, the pile-plate retaining wall is a passive protection measure used in the proposed interception site, and its applicable terrain slope is 25°~35°. In order to study the dynamic response of such a pile-plate structure under rockfall impact load, numerical simulation is carried out by coupling finite element and infinite element. Combined with the classical elastoplastic theory, the characteristic parameters such as impact force, penetration depth and structural energy dissipation effect of the pile-plate retaining wall during loading and unloading rebound process under different impact conditions are systematically analyzed, and the impact resistance of the structure is clarified. The results show that the "infinite element" boundary can effectively reduce the error caused by the reflection of the stress wave at the artificial truncation boundary. In the case of impact speeds of 10 m·s-1, 15 m·s-1 and 20 m·s-1, 25 m·s-1, the calculated impact forces are 1.9MN, 2.5MN, 3.1MN, 3.7MN, respectively. The results are consistent with the Kawahara model, but larger than the Labiouse model and the Hertz elastic solution. According to the concrete damage theory, the classification of damage level is proposed and the degree of structural damage is effectively quantified. When the impact speed is greater than 20 m·s-1, the pile and plate concrete tensile damage is seriously damaged, and the structure has the risk of completely losing the bearing capacity. The calculation methods and results in this paper can provide practical guidance for the related structural design.
-
Key words:
- Pile-plate retaining wall /
- Rockfall /
- Numerical simulation /
- Dynamic response /
- Concrete damage
-
图 9 典型土工格栅本构(Dong,2011)
Figure 9. Typical geogrid constitutive(Dong, 2011)
表 1 钢筋材料参数(林峰等,2008)
Table 1. Parameters of reinforcement material(Lin et al., 2008)
型号 密度/kg·m-3 弹性模量/MPa 泊松比 屈服强度/MPa 极限强度/MPa 极限拉应变 HRB400 7800 2.0×105 0.27 503 662 0.130 HRB335 7800 2.0×105 0.27 461 691 0.118 表 2 混凝土及缓冲层土体材料参数(周珉等,2017)
Table 2. Parameters of concrete and cushion soil material(Zhou et al., 2017)
材料类型 密度/kg·m-3 弹性模量/MPa 泊松比 剪胀角/(°) 偏心率 fb0/fco K 黏性参数 C30混凝土 2500 30 000 0.20 38 0.1 1.16 0.666 67 0.000 01 缓冲层土体 1800 35 0.28 摩擦角/(°) K 剪胀角/(°) — — 39.1 1 0 — — 表 3 土工格栅材料参数
Table 3. Parameters of geogrid material
密度/kg·m-3 间距/mm 肋条宽厚/mm 截面积/mm2 惯性矩/mm4 弹性模量/MPa 屈服强度/MPa 泊松比 910 80×80 3.2×1.3 4.16 0.58 3500 400 0.2 -
Chau K T, Wong R H C, Wu J J. 2002. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics & Mining Sciences, 39(1):69-77. http://www.sciencedirect.com/science/article/pii/S1365160902000163 Dong Y L, Han J, Bai X H. 2011. Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures[J]. Geotextiles & Geomembranes, 29(2):83-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70580298dff6ead8db25a7307f9f4d7e Han Z H, Chen X, Wang X L, et al. 2017. Risk assessment for Luojiaqingginggangling rockfall[J]. Journal of Engineering Geology, 25(2):520-530. Johnson K L. 1992. Contact Mechanics[M]. Beijing:Higher Education Press:386-424. Jr J F S, Bishop M P. 1998. Mass movement in the Himalaya:new insights and research directions[J]. Geomorphology, 26(1-3):13-35. doi: 10.1016/S0169-555X(98)00049-X Kawahara S, Muro T. 2006. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics, 43(3):329-340. doi: 10.1016/j.jterra.2005.05.009 Kojan E, Hutchinson J N. 1978. Mayunmarca rockslide and debris flow, Peru[J]. Developments in Geotechnical Engineering, 14:315-361. doi: 10.1016/B978-0-444-41507-3.50017-9 Labiouse V, Descoeudres F, Montani S. 1966. Experimental Study of Rock Sheds Impacted by rock Blocks[J]. Structural Engineering International, 6(3):171-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2749/101686696780495536 Li M, Li H N. 2011. Investigation into dynamic properties of damaged plasticity model for concrete in ABAQUS[J]. Journal of Disaster Prevention and Mitigation Engineering, 31(3):299-303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201103011 Lin F, Gu X L, Kuang X X, et al. 2008. Constitutive models for reinforcing steel bars under high strain rates[J]. Journal of Building Materials, 11(1):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzclxb200801003 Mougin J P, Perrotin P, Mommessin M, et al. 2005. Rock fall impact on reinforced concrete slab:an experimental approach[J]. International Journal of Impact Engineering, 31(2):169-183. doi: 10.1016/j.ijimpeng.2003.11.005 Muraishi H, Samizo M, Sugiyama T. 2005. Development of a flexible low-energy rockfall protection fence[J]. Quarterly Report of RTRI, 46(3):161-166. doi: 10.2219/rtriqr.46.161 Paronuzzi P. 2009. Field evidence and kinematical back-analysis of block rebounds:the lavone rockfall, Northern Italy[J]. Rock Mechanics & Rock Engineering, 42(5):783-813. doi: 10.1007/s00603-008-0021-1 Peila D, Oggeri C, Castiglia C. 2007. Ground reinforced embankments for rockfall protection:design and evaluation of full scale tests[J]. Landslides, 4(3):255-265. doi: 10.1007/s10346-007-0081-4 Pichler B, Hellmich C, Mang H A, et al. 2006. Loading of a gravel-buried steel pipe subjected to rockfall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(11):1465-1473. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1465) Procter E, Strapazzon G, Balkenhol K, et al. 2015. Search and rescue response to a large-scale rockfall disaster[J]. Wilderness & Environmental Medicine, 26(1):68-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7545a4bf0c2df6ee4bd9734d57c3d6ef Qi Y L, Hisanori O. 2014. Study of ABAQUS dynamic infinite element artificial boundary[J]. Rock and Soil Mechanics, 35(10):3007-3013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201410035 Ritchie A M. 1963. Evaluation of rockfall and its control[J]. Highway Research Record, 17(4):291-304. Ronco C, Oggeri C, Peila D. 2009. Design of reinforced ground embankments used for rockfall protection[J]. Natural Hazards & Earth System Sciences, 9(4):1189-1199. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5b99d3dc254e8b77c671462ebe87d85a The National Standards Compilation Group of People's Republic of China. 2010. Code for design of concrete structures(GB50010-2002)[S].Beijing: China Architecture and Building Press. Thornton C. 1997. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 64(2):383-386. doi: 10.1115/1.2787319 Wang D P, Liu Y, Pei X J, et al. 2016. Elasto-plastic dynamic responses of reinforced concrete slabs under rockfall impact[J]. Journal of Southwest Jiaotong University, 51(6):1147-1153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201606014 Wang S, Zhou X J, Jiang B, et al. 2016. Numerical analysis of dynamic response and impact resistance of a large-span rock shed in a tunnel under rockfall impact.[J]. Explosion and Shock Waves, 36(4):548-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201604016 Wang X L, Liu H Y, Wang R Q, et al. 2018. The approach of rock collapse(rockfall) identification and prediction for power transmission and transformation project in mountain area[J]. Journal of Engineering Geology, 26(1):172-178. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201801020 Wang Z Q, Yu Z W. 2004. Concrete damage model based on energy loss[J]. Journal of Building Materials, 7(4):365-369. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201709017 Yamagishi H. 2000. Recent landslides in western hokkaido, japan[J]. Pure & Applied Geophysics, 157(6-8):1115-1134. doi: 10.1007-s000240050020/ Zhang G C, Tang H M, Xiang X, et al. 2015. Theoretical study of rockfall impacts based on logistic curve[J]. International Journal of Rock Mechanics & Mining Sciences, 78:133-143. http://www.sciencedirect.com/science/article/pii/S1365160915001513 Zhang L Q, Yang Z F, Zhang Y J. 2005. Risk analysis of encountering rockfalls on highway and method study[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (S2):5543-5548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502018119 Zhang Q L, Wang Q C, Wu Q, et al. 2015. Anti-impact performances of different kinds of shed-tunnel structures[J]. Journal of Vibration and Shock, 34(3):72-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201503013 Zhou M, Huang Z M, Gao Y, et al. 2017. Column-web combined model for steel-reinforcedconcreteshear wall[J]. Journal of Building Structures, 38(11):55-63. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZJB201711007.htm Zhu J W. 2018. Geological hazard modes and integrated environmental management of highly incised slopes in Jixian mines illustrated with example of northern Daxingyu mine, Jixian[J]. Journal of Engineering Geology, 26(2):348-355. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201802010 Zineddin M. 2008. Simulation of Reinforced Concrete Slab Behavior under Impact Loading[C]//Architectural Engineering Conference: 1-9. 韩振华, 陈鑫, 王学良, 等. 2017.四川罗家青杠岭崩塌风险的定量评价研究[J].工程地质学报, 25(2):520-530. http://www.gcdz.org/CN/abstract/abstract12379.shtml Johnson K L. 1992.接触力学[M].北京:高等教育出版社:386-424. 李敏, 李宏男. 2011. ABAQUS混凝土损伤塑性模型的动力性能分析[J].防灾减灾工程学报, 31(3):299-303. http://d.old.wanfangdata.com.cn/Periodical/dzxk201103011 林峰, 顾祥林, 匡昕昕, 等. 2008.高应变率下建筑钢筋的本构模型[J].建筑材料学报, 11(1):14-20. doi: 10.3969/j.issn.1007-9629.2008.01.003 戚玉亮, 大塚久哲. 2014. ABAQUS动力无限元人工边界研究[J].岩土力学, 35(10):3007-3012. http://d.old.wanfangdata.com.cn/Periodical/ytlx201410035 王东坡, 刘洋, 裴向军, 等. 2016.滚石冲击钢筋混凝土板的弹塑性动力响应研究[J].西南交通大学学报, 51(6):1147-1153. doi: 10.3969/j.issn.0258-2724.2016.06.014 王爽, 周晓军, 姜波, 等. 2016.落石冲击下隧道大跨度棚洞的动力响应数值分析与抗冲击研究[J].爆炸与冲击, 36(4):548-556. http://d.old.wanfangdata.com.cn/Periodical/bzycj201604016 王学良, 刘海洋, 王瑞琪, 等. 2018.山区输变电工程崩塌(滚石)灾害识别与预测方法[J].工程地质学报, 26(1):172-178. http://www.gcdz.org/CN/abstract/abstract12646.shtml 王中强, 余志武. 2004.基于能量损失的混凝土损伤模型[J].建筑材料学报, 7(4):365-369. doi: 10.3969/j.issn.1007-9629.2004.04.001 张路青, 杨志法, 张英俊. 2005.公路沿线遭遇滚石的风险分析——方法研究[J].岩石力学与工程学报, 24 (S2):5543-5548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502018119 张群利, 王全才, 吴清, 等. 2015.不同结构类型棚洞的抗冲击性能研究[J].振动与冲击, 34(3):72-76. http://d.old.wanfangdata.com.cn/Periodical/zdycj201503013 中华人民共和国国家标准编写组. 2002.混凝土结构设计规范(GB50010-2002)[S].北京: 中国建筑工业出版社. 周珉, 黄宗明, 高永, 等. 2017.型钢混凝土剪力墙边框柱-腹板组合分析模型研究[J].建筑结构学报, 38(11):55-63. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201711007 祝介旺. 2018.蓟县矿山高切坡地质灾害致灾模式及环境综合治理研究——以蓟县大兴峪北矿区高切坡为例[J].工程地质学报, 26 (2):348-355. http://www.gcdz.org/CN/abstract/abstract12665.shtml -