新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究

杨龙伟 魏云杰 彭令 王文沛 朱赛楠 王俊豪

杨龙伟, 魏云杰, 彭令, 等. 2020.新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究[J].工程地质学报, 28(3): 520- 529. doi: 10.13544/j.cnki.jeg.2019-109
引用本文: 杨龙伟, 魏云杰, 彭令, 等. 2020.新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究[J].工程地质学报, 28(3): 520- 529. doi: 10.13544/j.cnki.jeg.2019-109
Yang Longwei, Wei Yunjie, Peng Ling, et al. 2020. Kinematical characteristics of collapse in red beds in Kangsu Town, Wuqia County, Xinjiang[J]. Journal of Engineering Geology, 28(3): 520-529. doi: 10.13544/j.cnki.jeg.2019-109
Citation: Yang Longwei, Wei Yunjie, Peng Ling, et al. 2020. Kinematical characteristics of collapse in red beds in Kangsu Town, Wuqia County, Xinjiang[J]. Journal of Engineering Geology, 28(3): 520-529. doi: 10.13544/j.cnki.jeg.2019-109

新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究

doi: 10.13544/j.cnki.jeg.2019-109
基金项目: 

国家重点研发计划 2018YFC1505404

中国地质调查局地质调查项目 DD20190647

中国地质调查局地质调查项目 DD20179609

中国地质调查局地质调查项目 DD20190637

国家自然科学青年基金项目 41602362

详细信息
    作者简介:

    杨龙伟(1992-), 男, 博士生, 主要从事工程地质与地质灾害防治研究工作. E-mail:yang0504@chd.edu.cn

    通讯作者:

    魏云杰(1973-), 男, 博士, 教授级高级工程师, 主要从事地质灾害与岩土工程等相关方面的研究. E-mail: wyj1973@126.com

  • 中图分类号: P642.23

KINEMATICAL CHARACTERISTICS OF COLLAPSE IN RED BEDS IN KANGSU TOWN, WUQIA COUNTY, XINJIANG

Funds: 

the National Key Research and Development Program of China 2018YFC1505404

China Geological Survey DD20190647

China Geological Survey DD20179609

China Geological Survey DD20190637

the National Natural Science Foundation of China 41602362

  • 摘要: 以新疆维吾尔自治区乌恰县康苏红层崩塌为例, 基于DAN-W运动学模型进行了红层崩塌碎屑流空间预测评价, 同时根据无人机航拍图和野外地质现场调查, 结合崩塌研究区的工程地质要素, 分析该崩塌的形成特征和失稳模式。结果表明:该崩塌为拉裂式崩塌, 主要受危岩体岩性组合和坡体结构面组合控制, 其孕灾模式为差异风化阶段→岩体结构变形破坏阶段→悬挑危岩阶段→崩塌失稳落下阶段, 具有典型的碎屑流运动特征。同时利用动力学模型软件DAN-W对该崩塌碎屑流的运动过程进行计算, 得到崩塌碎屑流的运动时长约为50 s, 堆积体平均厚度达到2 m, 最大速度为11.5 m·s-1, 冲击最远距离达到315 m, 与实际情况相符。表明DAN-W模型可以用来分析红层崩塌碎屑流的动力学灾害效应, 为红层地区类似的潜在崩塌碎屑流灾害的形成特征和运动效应分析提供借鉴。
  • 图  1  a.新疆维吾尔自治区红层分布示意图(据《中国国家地理》修改, 2013); b.康苏崩塌地理位置图

    Figure  1.  a. The distributing map of the red beds in Xinjing; b. Location of the Kangsu collapse in Wuqia County, Xinjiang

    图  2  滑坡工程地质剖面图和崩塌区岩体结构图

    Figure  2.  Engineering geological section of the Kangsu collapse and the rock mass structure in the collapse area

    图  3  康苏崩塌全貌图(a)及形成特征(b~d)

    Figure  3.  The panorama(a) and the forming factors(b~d) of the Kangsu collapse

    图  4  崩塌失稳机制示意图

    Figure  4.  Evolutionary process of Kangsu collapses in Wuqia

    图  5  康苏崩塌DAN-W三维模型图(a)和块体受力图(b)

    Figure  5.  The three-dimensional DAN-W model of the Kangsu collapse(a) and the force diagram of block(b)

    图  6  崩塌碎屑流前后缘随时间运动图

    Figure  6.  Variation figure of the front and rear edge of the collapse-debris flow with time

    图  7  崩塌-碎屑流前后缘随滑程变化图

    Figure  7.  Variation figure of the front and rear edge of the collapse-debris flow with slippage change

    图  8  崩塌碎屑流形态变化图

    Figure  8.  Morphologic variation of the collapse-debris flow

    图  9  堆积体厚度变化图

    Figure  9.  Thickness variation of the collapse-debris flow

    图  10  公路处速度随时间变化图

    Figure  10.  Graph showing the velocity variation in the road

    图  11  公路处堆积体厚度随时间变化图

    Figure  11.  Graph showing the slide thickness variation in the road

    表  1  康苏崩塌模型试算组合表

    Table  1.   Hydrodynamics model of the Kangsu collapse

    模型 崩塌区 碎屑流区 堆积区
    Frictional模型 F F F
    F-V-V V F V
    F-V-F F V F
    F-F-V F F V
    下载: 导出CSV

    表  2  康苏模型(F-F-V)参数

    Table  2.   Parameters of F-F-V model of the Kangsu collapse

    模型 密度γ/kN·m-3 动摩擦角Φ/(°) 摩擦系数f 湍流系数ξ/m·s-2 孔隙水压力Ru
    F 25 17 0.7
    V 25 0.2 400
    下载: 导出CSV
  • Chen H K, Xian X F, Tang H M, et al. 2009. Stability analysis method for perilous rock[J]. Chinese Journal of Applied Mechanics, 26(2): 278-282. http://d.old.wanfangdata.com.cn/Periodical/cqdxxb200904015
    Chen H K, Xian X F, Tang H M. 2010. Developing mechanism for collapse disaster in rock mountain area——taking Mt. Hongyan in the national scenic spots of Simianshan as an example[J]. Journal of Sichuan University(Engineering Science Edition), 42(3): 1-6.
    Cheng L X, Su S R, Li S, et al. 2012. Analysis of formation mechanisms of highway slope collapse after Wenchuan earthquake[J]. Journal of Engineering Geology, 20(2): 249-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201202014
    Cheng Q, Kou X B, Huang S B, et al. 2004. The distributes and geologic environment characteristics of red beds in China[J]. Journal of Engineering Geology, 12(1): 34-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200401007
    Dan Z Q. 2013. Red layer: the great scenery of Xinjiang.[EB/OL]. (2013-10-01)[2019-10-28]. http://www.dili360.com/cng/article/p5350c3d63ca4280.html.
    Gao Y, Yin Y P, Li B, et al. 2018. Characteristics and numerical runout modeling analysis of the Jiweishan landslide, Chongqing, China[J]. Environmental & Engineering Geoscience, XXIV: 1-11.
    Goodman R E, Shi G. 1984. Block theory and its application to rock engineering[M]. Upper Saddle River: Prentice-Hall.
    Hu H T. 2005. Research on the collapse and falling stone[J]. Journal of Railway Engineering Society, (S1): 387-391.
    Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y
    Hungr O. 2009. Numerical modelling of the motion of rapid, flow-like landslides for hazard assessment[J]. Ksce Journal of Civil Engineering, 13(4): 281-287. doi: 10.1007/s12205-009-0281-7
    Hungr O. 2000. Analysis of debris flow surges using the theory of uniformly progressive flow[J]. Earth Surface Processes & Landforms, 25(5): 483-495. doi: 10.1002-(SICI)1096-9837(200001)25-1-1--AID-ESP68-3.0.CO%3b2-2/
    Hungr O. 1995. A model for the runout analysis of rapid flow slides, debris flows, an[J]. Canadian Geotechnical Journal, 32(4): 610-623. doi: 10.1139/t95-063
    Itasca, Consulting Group Inc. 2008. PFC3D particle flow code in 3 dimensions. User's Guide[S]. Minneapolis, MN, USA: Itasca, Consulting Group Inc.
    Li B X, Miao T D. 2004. The sliding mechanism of red—mudstone layer landslides[J]. Journal of Lanzhou University, 40(3): 95-98.
    Li X Z, Cui Y, Zhang X G, et al. 2019. Types, characteristics and spatial distribution law of landslides and collapses along Sichuan-tibet railway[J]. Journal of Engineering Geology, 27 (S1): 110-120.
    Ma P H, Peng J B, Li T L, et al. 2018. Forming mechanism and motion characteristics of the"3·8"Jiangliu loess landslide in Jingyang County of Shanxi province[J]. Journal of Engineering Geology, 26(3): 663-672. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201803014
    McDougall S, Hungr O. 2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42(5): 1437-1448. doi: 10.1139/t05-064
    Pei X J, Huang R Q, Li S G. 2011. Study of dynamic response of bridge pier shocked by falling rock induced by intensive earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 30 (S2): 3995-4001.
    Scheidegger A E. 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics and Rock Engineering, 5(4): 231-236.
    Shi G, Goodman R E. 1989. The key blocks of unrolled joint traces in developed maps of tunnel walls[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 13(2): 131-158. doi: 10.1002/nag.1610130203
    Shi W B, Li H J, Zeng Z, et al. 2018. Deformation and failure mechanism of gently anti-inclined red-bed slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 38(5): 881-888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201805016
    Tang H M, Yi P Y. 2003. Research on dangerous rock movement route[J]. Journal of Chongqing Architecture University, 25(1): 17-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqjzdxxb200301004
    Wang G L, Wu F Q, Qi S W, et al. 2013. Mechanism and assessment methods for plastic flow and tensile crack-type collapse[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (S1): 2863-2869. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2013z1037
    Wang G L, Zhang M S, Su T M, et al. 2011. Collapse failures modes and DEM numerical simulation for loess slopes[J]. Journal of Engineering Geology, 19(4): 541-549.
    Wang Z R. 2005. Basic characteristics of red-soft-mudstone layer landslides[J]. Clean Coal Technology, (2): 75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjmjs200502021
    Wang F W, Sassa K. 2002. A modified geotechnical simulation model for the areal prediction of landslide motion[C]//Proceedings of the 1st European Conference on Landslides. Prague, Czech Republic: [s.n.].
    Yang L W, Wei Y J, Zhu S N, et al. 2018. Formation mechanism of the Kezilesai Landslide in Yining County, Xinjiang and its dynamic characteristics[J]. The Chinese Journal of Geological Hazard and Control, 29(3): 18-24.
    Yang P P. 2018. Analysis on meteorological factor variation in recent 60 years in Wuqia county[J]. Northwest Hydropower, (6): 13-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbsd201806004
    Yin Y P, Li B, Wang W P, et al. 2016. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2(2): 230-249. doi: 10.1016/J.ENG.2016.02.005
    Zhu C G, Liu C, Xu Q, et al. 2019. Discrete element numerical simulation research on friction heat in sliding zone of the landslide[J]. Journal of Engineering Geology, 27(3): 651-658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201903021
    陈洪凯, 鲜学福, 唐红梅, 等. 2009.危岩稳定性分析方法[J].应用力学学报, 26(2): 278-282. http://d.old.wanfangdata.com.cn/Periodical/yylxxb200902015
    陈洪凯, 鲜学福, 唐红梅. 2010.石质山区崩塌灾害形成机制——以四面山国家级风景名胜区红岩山为例[J].四川大学学报(工程科学版), 42(3): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201003001
    成良霞, 苏生瑞, 李松, 等. 2012.震后公路边坡崩塌地质灾害形成机理分析[J].工程地质学报, 20(2): 249-258. doi: 10.3969/j.issn.1004-9665.2012.02.014
    程强, 寇小兵, 黄绍槟, 等. 2004.中国红层的分布及地质环境特征[J].工程地质学报, 12(1): 34-40. doi: 10.3969/j.issn.1004-9665.2004.01.007
    单之蔷. 2013.红层: 新疆维吾尔自治区的大风景.[EB/OL]. (2013-10-01)[2019-10-28]. http://www.dili360.com/cng/article/p5350c3d63ca4280.html.
    胡厚田. 2005.崩塌落石研究[J].铁道工程学报, (S1): 387-391. http://d.old.wanfangdata.com.cn/Periodical/tdgcxb2005z1056
    李保雄, 苗天德. 2004.红层软岩滑坡运移机制[J].兰州大学学报(自然科学版), 40(3): 95-98. http://d.old.wanfangdata.com.cn/Periodical/lzdxxb200403021
    李秀珍, 崔云, 张小刚, 等. 2019.川藏铁路全线崩滑灾害类型、特征及其空间分布发育规律[J].工程地质学报, 27 (S1): 110-120. doi: 10.13544/j.cnki.jeg.2019035
    马鹏辉, 彭建兵, 李同录, 等. 2018.陕西泾阳"3·8"蒋刘黄土滑坡成因及运动特征分析[J].工程地质学报, 26(3): 663-672. doi: 10.13544/j.cnki.jeg.2017-142
    裴向军, 黄润秋, 李世贵. 2011.强震崩塌岩体冲击桥墩动力响应研究[J].岩石力学与工程学报, 30 (S2): 3995-4001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gljtkj-yyjsb201108004
    史文兵, 李洪建, 曾臻, 等. 2018.平缓反倾红层边坡变形破坏机制研究[J].防灾减灾工程学报, 38(5): 881-888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201805016
    唐红梅, 易朋莹. 2003.危岩落石运动路径研究[J].重庆建筑大学学报, 25(1): 17-23. http://d.old.wanfangdata.com.cn/Periodical/cqjzdxxb200301004
    王根龙, 伍法权, 祁生文, 等. 2013.塑流-拉裂式崩塌机制及评价方法[J].岩石力学与工程学报, 32 (S1): 2863-2869. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2013z1037
    王根龙, 张茂省, 苏天明, 等. 2011.黄土崩塌破坏模式及离散元数值模拟分析[J].工程地质学报, 19(4): 541-549. doi: 10.3969/j.issn.1004-9665.2011.04.015
    王志荣. 2005.红层软岩滑坡基本特征[J].洁净煤技术, (2): 75-78. doi: 10.3969/j.issn.1006-6772.2005.02.021
    杨龙伟, 魏云杰, 朱赛楠, 等. 2018.新疆伊宁县克孜勒赛滑坡成灾机理和动力学特征[J].中国地质灾害与防治学报, 29(3): 18-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201803003
    杨鹏鹏. 2018.乌恰县近60 a气象要素变化分析[J].西北水电, (6): 13-16. doi: 10.3969/j.issn.1006-2610.2018.06.003
    朱晨光, 刘春, 许强, 等. 2019.滑坡滑带摩擦热离散元数值模拟研究[J].工程地质学报, 27(3): 651-658. doi: 10.13544/j.cnki.jeg.2018-177
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  483
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 修回日期:  2019-12-10
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回