纳米SiO2和石灰改良黄泛区粉土的力学特性研究

张艳美 马丁 李国勋 毕舰心

张艳美, 马丁, 李国勋, 等. 2021. 纳米SiO2和石灰改良黄泛区粉土的力学特性研究[J]. 工程地质学报, 29(4): 1233-1239. doi: 10.13544/j.cnki.jeg.2019-128
引用本文: 张艳美, 马丁, 李国勋, 等. 2021. 纳米SiO2和石灰改良黄泛区粉土的力学特性研究[J]. 工程地质学报, 29(4): 1233-1239. doi: 10.13544/j.cnki.jeg.2019-128
Zhang Yanmei, Ma Ding, Li Guoxun, et al. 2021. Mechanical properties of nano-SiO2 and lime-stabilized silt in Yellow River flood area[J]. Journal of Engineering Geology, 29(4): 1233-1239. doi: 10.13544/j.cnki.jeg.2019-128
Citation: Zhang Yanmei, Ma Ding, Li Guoxun, et al. 2021. Mechanical properties of nano-SiO2 and lime-stabilized silt in Yellow River flood area[J]. Journal of Engineering Geology, 29(4): 1233-1239. doi: 10.13544/j.cnki.jeg.2019-128

纳米SiO2和石灰改良黄泛区粉土的力学特性研究

doi: 10.13544/j.cnki.jeg.2019-128
基金项目: 

国家自然科学基金 51208510

山东省研究生教育质量提升计划项目 SDYAL17020

山东省研究生教育创新计划项目 SDYY15140

详细信息
    作者简介:

    张艳美(1972-),女,博士,副教授,主要从事岩土工程方面的科研与教学工作. E-mail: zhangym@upc.edu.cn

    通讯作者:

    马丁(1994-),男,硕士生,主要从事土动力学方面的科研工作. E-mail: z17060585@s.upc.edu.cn

  • 中图分类号: TU433

MECHANICAL PROPERTIES OF NANO-SiO2 AND LIME-STABILIZED SILT IN YELLOW RIVER FLOOD AREA

Funds: 

the National Natural Science Foundation of China 51208510

Shandong Province Graduate Education Quality Improvement Program SDYAL17020

Shandong Graduate Education Innovation Program SDYY15140

  • 摘要: 为探究纳米SiO2和石灰对黄泛区粉土的改良效果,通过击实试验、无侧限抗压强度试验、扫描电镜试验和XRF试验等系列试验,研究纳米SiO2和石灰掺量对黄泛区粉土压实性、抗压强度、水稳性等力学特性的影响,分析改良粉土的微观结构及固化机理。结果表明:纳米SiO2改良土的最大干密度和最优含水率随纳米SiO2掺量的增加而提高,纳米SiO2改良土中掺加石灰会降低最大干密度,但会提高最优含水率;纳米SiO2与石灰联合使用改良效果优于单独掺入纳米SiO2,1.5%纳米SiO2-2%石灰改良土的无侧限抗压强度、黏聚力和内摩擦角提升最为显著;与素土和纳米SiO2改良土相比,纳米SiO2-石灰改良土的水稳性得到显著改善;在纳米SiO2改良土中,纳米SiO2主要起到填充土颗粒之间孔隙的作用,纳米SiO2与石灰联合使用可在土中形成胶结物质、发挥黏结与填充作用、大幅提高土的强度。
  • 图  1  击实试验结果

    Figure  1.  Compaction test result

    图  2  掺量和养护龄期对改良粉土强度的影响

    Figure  2.  Effect of dosage and curing age on the strength of improved silt

    图  3  7 d龄期下不同纳米SiO2和石灰掺量下改良粉土的UCS

    Figure  3.  UCS of improved silt under different nano-SiO2 and lime content after cured by 7 days

    图  4  7 d龄期改良粉土的轴向应力-应变关系曲线

    Figure  4.  Axial stress-strain curve of improved silt after cured by 7 days

    图  5  改良粉土7 d龄期饱和强度折减率

    Figure  5.  Saturation strength reduction rate of improved silt under nano-SiO2 and lime after cured by 7 days

    图  6  水稳性试验照片

    a. 素土;b.2%纳米SiO2改良土;c.1%石灰+ 1%纳米SiO2改良土;d.2%石灰+ 1.5%纳米SiO2改良土

    Figure  6.  Water stability test photos

    图  7  改良粉土的抗剪强度指标

    Figure  7.  Shear strength index of improved silt

    图  8  扫描电镜照片

    a. 素土;b.2%纳米SiO2改良土;c.2%石灰+ 1.5%纳米SiO2改良土

    Figure  8.  Scanning electron micrographs

    表  1  试验土样的物理性质指标

    Table  1.   Physical properties of test soil samples

    液限/% 塑限/% 塑性指数 最大干密度/(g·cm-3) 最优含水率/% pH
    22.53 12.87 9.66 1.68 14.01 8.50
    下载: 导出CSV

    表  2  纳米二氧化硅的规格指标

    Table  2.   Specifications of Nano-SiO2

    平均粒径/nm 纯度/% 表面积/(m2·g-1) 堆积密度/(g·cm-3) 形态
    15 99.8 200 0.05 粉末状
    下载: 导出CSV

    表  3  试验方案

    Table  3.   Test plan

    试验类型 纳米SiO2掺量/% 石灰掺量/% 养护龄期/d
    击实试验 0,1.0,1.5,2.0 0,1.0,2.0 1
    无侧限抗压强度试验 0,1.0,1.5,2.0 0,1.0,2.0 1,7,28,64
    水稳性试验 0,1.0,1.5,2.0 0,1.0,2.0 6+1(浸水)
    直剪试验 0,2.0 0 7
    1.0,1.5,2.0 2.0
    SEM试验 0 0 28
    2.0 0
    1.5 2.0
    XRF试验 0 0
    1.5 0
    1.5 2.0
    下载: 导出CSV

    表  4  试样的化学成分

    Table  4.   Chemical compositions of samples

    化合物 素土浓度/% 素土+1.5%SiO2浓度/% 素土+1.5%SiO2+2%石灰浓度/%
    SiO2 63.460 66.765 62.051
    Al2O3 12.034 11.148 10.538
    CaO 6.696 6.463 8.230
    Fe2O3 3.078 2.966 2.868
    Na2O 2.420 2.605 2.303
    K2O 2.294 2.214 2.137
    MgO 1.973 1.758 1.777
    TiO2 1.474 1.452 1.441
    P2O5 0.163 0.133 0.133
    SO3 0.093 0.069 0.098
    其他 6.315 4.427 8.424
    下载: 导出CSV
  • Altun S, Sezer A, Erol A. 2009. The effects of additives and curing conditions on the mechanical behavior of a silty soil[J]. Cold Regions Science and Technology, 56(2-3): 135-140. doi: 10.1016/j.coldregions.2008.11.007
    Bell F G. 1996. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 42(4): 223-237. doi: 10.1016/0013-7952(96)00028-2
    Changizi F, Haddad A. 2015. Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7(4): 367-378. doi: 10.1016/j.jrmge.2015.03.013
    Chen X J, Hu S W, Huang Y Y, et al. 2017. Experimental study on strength characteristics of red clay under influence of nano-CaCO3[J]. Journal of Engineering Geology, 25(5): 1293-1298. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201253353095.html
    Chen X J, Li J C, Song Y, et al. 2018. Effect of nano graphite powder on mechanical properties of red clay[J]. Journal of Engineering Geology, 26(1): 97-102. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201801011.htm
    Chithra S, Senthil Kumar S R R, Chinnaraju K. 2016. The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate[J]. Construction and Building Materials, 113 : 794-804. doi: 10.1016/j.conbuildmat.2016.03.119
    Choobbasti a J, Vafaei A, Kutanaei S S. 2015. Mechanical properties of sandy soil improved with cement and nanosilica[J]. Open Engineering, 5(1): 111-116. http://adsabs.harvard.edu/abs/2015OEng....5...11C
    Gelsefidi S A S, Mamaghanian J. 2013. Stabilization of a weak low plasticity clay soil using nanomaterial[C]//International Young Geotechnical Engineers' Conference: 134-137.
    Ghasabkolaei N, Janalizadeh A, Jahanshahi M, et al. 2016. Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: an experimental study[J]. The European Physical Journal Plus, 131(5): 1-11. doi: 10.1140/epjp/i2016-16134-3
    Ghasabkolaei N, Janalizadeh Choobbasti A, Roshan N, et al. 2017. Geotechnical properties of the soils modified with nanomaterials: A comprehensive review[J]. Archives of Civil and Mechanical Engineering, 17(3): 639-650. doi: 10.1016/j.acme.2017.01.010
    He Z J, Chai S X, Li M. 2018. Effect of wetting and drying cycles on the compressive strength of oil-contaminated soil treated with lime and fly ash[J]. Journal of Engineering Geology, 26(2): 438-444. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201802020.htm
    Lemaire K, Deneele D, Bonnet S, et al. 2013. Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt[J]. Engineering Geology, 166(8): 255-261. http://www.sciencedirect.com/science/article/pii/S0013795213002603
    Li W, Huang Z, Cao F, et al. 2015. Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix[J]. Construction and Building Materials, 95(1): 366-374. http://www.sciencedirect.com/science/article/pii/S0950061815301902
    Li Y, Chen J, Wang F, et al. 2017. Effects of silica nano-powder on properties of high performance mortar[J]. Concrete, 8 : 116-119.
    Mehenni A, Cuisinier O, Masrouri F. 2016. Impact of lime, cement, and clay treatments on the internal erosion of compacted soils[J]. Journal of Materials in Civil Engineering, 28(9): 04016071. doi: 10.1061/(ASCE)MT.1943-5533.0001573
    Pashabavandpouri M A, Jahangiri S. 2015. Effect of nanosilica on swelling, compaction and strength properties of clayed soil stabilized with lime[J]. Journal of Applied Environmental and Biological Sciences, 5(7S): 538-548. http://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%205(7S)538-548,%202015.pdf
    Peng L Y, Wang J Y. 2017. Experimental study on anti-corrosion of corn straw and its effect in silt improvement[J]. Journal of Engineering Geology, 25(1): 132-138. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201253352436.html
    Qu J L, Hu C K, Zhao C N. 2017. Shear strength experimental study on basalt fiber and nano slilca reinforced Shanghai clay[J]. Journal of Water Resources & Water Engineering, 28(3): 186-192. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBSZ201703034.htm
    Ren X C. 2016. Experimental study of nano-silica on the mechanical properties of frozen(thawing)-soil[D]. Lanzhou: Lanzhou University.
    Yong R N, OuhadI V R. 2007. Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils[J]. Applied Clay Science, 35(3-4): 238-249. doi: 10.1016/j.clay.2006.08.009
    Zhang T, Liu S Y, Cai G J, et al. 2015. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 37(10): 1876-1885. http://www.cqvip.com/QK/95758X/201510/666512926.html
    Zhang Y J, Yu C X, Ling F, et al. 2015. Experimental study on asbestos fiber reinforced fly ash soil-cement for soft soil enhancement[J]. Journal of Engineering Geology, 23(5): 982-988. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201505027.htm
    Zhu Z D, Liu S Y, Sun H J. 2004. Study of stabilized silt in Xu-Su area[J]. Rock and Soil Mechanics, 25(7): 1155-1158. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX20040700X.htm
    Zhu Z D, Liu S Y. 2008. Utilization of a new soil stabilizer for silt subgrade[J]. Engineering Geology, 97(3): 192-198. http://www.sciencedirect.com/science/article/pii/S0013795208000161
    Zomorodian S M A, Shabnam M, Armina S, et al. 2017. Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives[J]. Applied Clay Science, 140 : 140-147. doi: 10.1016/j.clay.2017.02.004
    陈学军, 胡舒伟, 黄耀意, 等. 2017. 纳米碳酸钙影响下红黏土强度特性试验研究[J]. 工程地质学报, 25(5): 1293-1298. doi: 10.13544/j.cnki.jeg.2017.05.015
    陈学军, 李家成, 宋宇, 等. 2018. 纳米石墨粉对红黏土力学性质的影响[J]. 工程地质学报, 26(1): 97-102. doi: 10.13544/j.cnki.jeg.2018.01.011
    何中江, 柴寿喜, 李敏. 2018. 干湿循环对石灰粉煤灰固化石油污染土抗压强度的影响[J]. 工程地质学报, 26(2): 438-444. doi: 10.13544/j.cnki.jeg.2017-043
    李阳, 陈杰, 王飞, 等. 2017. 纳米二氧化硅对水泥砂浆性能的影响[J]. 混凝土, 8 : 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201708029.htm
    彭丽云, 王剑烨. 2017. 玉米秸秆防腐及其粉土加筋效果研究[J]. 工程地质学报, 25(1): 132-138. doi: 10.13544/j.cnki.jeg.2017.01.018
    璩继立, 胡晨凯, 赵超男. 2017. 玄武岩纤维和纳米二氧化硅加筋上海黏土的抗剪强度试验研究[J]. 水资源与水工程学报, 28(3): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201703034.htm
    任晓川. 2016. 基于纳米二氧化硅改良的冻(融)土力学特性的试验研究[D]. 兰州: 兰州大学.
    张涛, 刘松玉, 蔡国军, 等. 2015. 木质素改良粉土热学与力学特性相关性试验研究[J]. 岩土工程学报, 37(10): 1876-1885. doi: 10.11779/CJGE201510016
    张艳军, 于沉香, 凌飞, 等. 2015. 石棉纤维粉煤灰水泥加固软土试验研究[J]. 工程地质学报, 23(5): 982-988. doi: 10.13544/j.cnki.jeg.2015.05.024
    朱志铎, 刘松玉, 孙海军. 2004. 江苏徐宿地区粉土的基本特性及加固方法研究[J]. 岩土力学, 25(7): 1155-1158. doi: 10.3969/j.issn.1000-7598.2004.07.033
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  42
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2020-07-20
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回