Cu(Ⅱ)污染作用下膨胀土的胀缩时程效应研究

韦桐忠 肖桂元 吴志敏 安冉 江廷荟

韦桐忠, 肖桂元, 吴志敏, 等. 2021. Cu(Ⅱ)污染作用下膨胀土的胀缩时程效应研究[J]. 工程地质学报, 29(4): 1224-1232. doi: 10.13544/j.cnki.jeg.2019-227
引用本文: 韦桐忠, 肖桂元, 吴志敏, 等. 2021. Cu(Ⅱ)污染作用下膨胀土的胀缩时程效应研究[J]. 工程地质学报, 29(4): 1224-1232. doi: 10.13544/j.cnki.jeg.2019-227
Wei Tongzhong, Xiao Guiyuan, Wu Zhimin, et al. 2021. Time effect of expansion and shrinkage of expansive clay contaminated by Cu(Ⅱ) [J]. Journal of Engineering Geology, 29(4): 1224-1232. doi: 10.13544/j.cnki.jeg.2019-227
Citation: Wei Tongzhong, Xiao Guiyuan, Wu Zhimin, et al. 2021. Time effect of expansion and shrinkage of expansive clay contaminated by Cu(Ⅱ) [J]. Journal of Engineering Geology, 29(4): 1224-1232. doi: 10.13544/j.cnki.jeg.2019-227

Cu(Ⅱ)污染作用下膨胀土的胀缩时程效应研究

doi: 10.13544/j.cnki.jeg.2019-227
基金项目: 

国家自然科学基金 51369010

广西科技计划项目 1598009-7

详细信息
    作者简介:

    韦桐忠(1995-),男,硕士生,主要从事防灾减灾工程领域的研究. E-mail: WTZ1235@163.com

    通讯作者:

    肖桂元(1976-),男,博士,教授,硕士生导师,主要从事防灾减灾等领域的教学与科研工作. E-mail: xiaoguiyuangit@163.com

  • 中图分类号: X53

TIME EFFECT OF EXPANSION AND SHRINKAGE OF EXPANSIVE CLAY CONTAMINATED BY Cu(Ⅱ)

Funds: 

the National Natural Science Foundation of China 51369010

Guangxi Science and Technology Project 1598009-7

  • 摘要: 为探讨Cu(Ⅱ)对膨胀土胀缩特性的影响,针对初始状态相同的膨胀土试样,采用浓度为2.5 g·L-1、5.0 g·L-1、10.0 g·L-1的CuSO4溶液以及去离子水进行处理,开展一系列重金属Cu(Ⅱ)污染作用下的胀缩性试验,并运用Does Response模型对胀缩时程曲线进行描述;利用马尔文激光粒度测试,分析了污染前后膨胀土的粒径分布特征。结果表明:膨胀土试样的膨胀率、收缩速率、竖向收缩率及膨胀含水率皆随Cu(Ⅱ)浓度的增大而增大,但膨胀土试样的损失含水率并不随Cu(Ⅱ)浓度的变化而变化;试样的无荷载膨胀时程曲线可分为快速增长、变减速及缓慢增长阶段;膨胀土的收缩过程可分为缓慢收缩、快速收缩与收缩稳定阶段;Does Response模型不能完全适应无荷载条件下的膨胀时程曲线,但能较好地描述收缩时程曲线;随着Cu(Ⅱ)浓度的增大,未污染膨胀土颗粒在80 μm处的粒径分布峰值消失,在47 μm处的粒径分布峰值往小粒径方向偏移,说明胶结物逐渐溶蚀,引起部分膨胀土大颗粒分解,依附在土颗粒表面的水膜面积增大,膨胀土吸水能力增强,进而导致高浓度环境中的膨胀土胀缩性较高。
  • 图  1  装样方式示意图

    Figure  1.  Method of installing samples

    图  2  无荷载膨胀率时程曲线

    Figure  2.  Swelling-time curve with unload

    图  3  各阶段拟合结果

    a. δ1+δ2阶段;b. δ3阶段

    Figure  3.  Fitting results at each stage of the experiment

    图  4  mwωhδ最终对比图

    Figure  4.  Comparison diagram of expansion water content,final expansion rate and water absorption quality

    图  5  自由膨胀率变化曲线

    Figure  5.  Curve of free swelling rate

    图  6  试样竖向收缩率

    Figure  6.  Vertical shrinkage of specimens

    图  7  收缩时程曲线拟合结果

    Figure  7.  Fitting results of shrinkage curve

    图  8  含水率-时间变化曲线

    Figure  8.  Variation curve of water content

    图  9  含水率与最终竖向收缩率对比图

    Figure  9.  Comparison of initial,lost water content and final vertical shrinkage

    图  10  粒径分布曲线

    Figure  10.  Particle size distribution

    图  11  土颗粒连结示意图

    Figure  11.  Diagram of soil particles connection

    表  1  膨胀土的基本物理性质指标

    Table  1.   Basic physical properties of expansive clay

    比重G 液限WL/% 塑限Wp/% 塑性指数Ip/% 自由膨胀率δef/%
    2.71 74.50 31.90 42.60 48.00
    下载: 导出CSV

    表  2  溶液pH值

    Table  2.   pH value of solution

    溶液浓度/g·L-1 2.5 5.0 10 未污染
    pH值 4.50 4.47 4.42 6.85
    下载: 导出CSV

    表  3  膨胀变形拟合结果

    Table  3.   Fitting results of swelling deformation

    浓度 相关系数 拟合结果
    未污染 0.982 $ \delta=6.762-\frac{6.575}{1+(t / 3.967)^{5.054}}$
    0.971 δ=5.707×t0.045
    2.5 g·L-1 0.984 $\delta=8.524-\frac{8.645}{1+(t / 5.040)^{5.921}} $
    0.982 δ=7.115×t0.047
    5.0 g·L-1 0.970 $\delta=9.463-\frac{9.641}{1+(t / 3.961)^{6.168}} $
    0.987 δ=7.703×t0.054
    10 g·L-1 0.992 $\delta=11.483-\frac{11.719}{1+(t / 5.920)^{3.866}} $
    0.992 δ=9.812×t0.038
    下载: 导出CSV

    表  4  收缩试验拟合结果

    Table  4.   Fitting results of shrinkage test

    浓度 相关系数 拟合结果
    未污染 0.992 $\delta=11.414-\frac{11.414}{1+(t / 6.772)^{2.967}} $
    2.5 g·L-1 0.989 $ \delta=15.120-\frac{15.120}{1+(t / 7.825)^{2.719}}$
    5.0 g·L-1 0.993 $\delta=12.918-\frac{12.918}{1+(t / 6.006)^{3.140}} $
    10 g·L-1 0.991 $ \delta=13.880-\frac{13.880}{1+(t / 6.026)^{2.872}}$
    下载: 导出CSV
  • Altin O,Ozbelge O H,Dogu T. 2015. Effect of pH,flow rate and concentration on the sorption of Pb and Cd on montmorillonite: Ⅱ. Modelling[J]. Journal of Chemical Technology & Biotechnology,74(12): 1139-1144. http://eurekamag.com/pdf.php?pdf=003420045
    Barast G, Andryrico R, Djeranmaigre I, et al. 2016. Swelling properties of natural and modified bentonites by rheological description[J]. Applied Clay Science, 142(1): 60-68. http://www.sciencedirect.com/science/article/pii/S0169131716300084
    Chang J, Yang H P, Xiao J, et al. 2019. Effect of acid rain infiltration on shear strength of expansive soil and its microscopic test[J]. Journal of Central South University(Science and Technology), 50(1): 203-216. http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD201901026.htm
    Chen X J, Chen Y C, Song Y, et al. 2019. Analysis on variation of physical-mechanical properties of red clay contaminated by Cu2+[J]. Journal of Engineering Geology, 27(5): 1010-1018. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905009.htm
    Chen X J, Zhou X, Song Y, et al. 2017. Experimental study on strength damage of red clay by Zn2+ pollution under leaching[J]. Journal of Engineering Geology, 25(5): 1264-1269. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201705011.htm
    Cheng F, Wang X H. 2015. Laboratory study on effects of mechanical behavior of rock due to invasion of heavy metal pollutants[J]. Journal of Engineering Geology, 23(5): 910-917. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201505014.htm
    Cheng F. 2014. Researches on mechanical properties and curing measures of rock-soil invaded by heavy metals[D]. Changsha: Central South University.
    Du Y J, Wei M L, Fei J, et al. 2013. Stress-strain relation and strength characteristics of cement treated zinc-contaminated clay[J]. Engineering Geology, 67(17): 20-26. http://www.sciencedirect.com/science/article/pii/S0013795213002664
    Gu J G, Zhou Q X, Wang X. 2003. Reused path of heavy metal pollution in soils and its research advance[J]. Journal of Basic Science and Engineering, 11(2): 143-151. http://www.researchgate.net/publication/285076096_Reused_path_of_heavy_metal_pollution_in_soils_and_its_research_advance
    Guo A G, Kong L W, Chen J B. 2006. Influential factors on free swell test[J]. Rock and Soil Mechanics, 27(11): 1949-1953. http://www.researchgate.net/publication/291705119_Influential_factors_on_free_swell_test
    Hu W, Lu S, Song W, et al. 2018. Competitive adsorption of U(Ⅵ) and Co(Ⅱ)on montmorillonite: A batch and spectroscopic approach[J]. Applied Clay Science, 157(2): 121-129. http://www.sciencedirect.com/science/article/pii/S0169131718300887
    Leng T, Tang C S, Xu D, et al. 2018. Advance on the engineering geological characteristics of expansive soil[J]. Journal of Engineering Geology, 26(1): 112-128. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201801013.htm
    Li Z Q, Li T, Hu R L, et al. 2008. Expansion characteristics and construction control of remolded Mengzi expansive soil[J]. Chinese Journal of Geotechnical Engineering, 30(12): 1855-1860. http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC200812018.htm
    Li Z Q, Yu W L, Fu L, et al. 2010. Research on expansion and contraction rules and disaster mechanism of expansive soil[J]. Rock and Soil Mechanics, 31 (S2): 270-275. http://www.cqvip.com/QK/94551X/2010S2/1003553132.html
    Tang C S, Shi B. 2011. Swelling and shrinkage behaviour of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 33(9): 1376-1384. http://www.researchgate.net/publication/287723461_Swelling_and_shrinkage_behaviour_of_expansive_soil_during_wetting-drying_cycles
    Turer D. 2007. Effect of heavy metal and alkali contamination on the swelling properties of kaolinite[J]. Environmental Geology, 52(3): 421-425. doi: 10.1007/s00254-006-0557-x
    Wang H S, Tang C S, Gong X P, et al. 2018. Research progresses in remediation of heavy metal contaminated soil with biochar[J]. Journal of Engineering Geology, 26(4): 1064-1077. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ201512024.htm
    Wu S, Zhang H. 2017. Influence of heavy metal pollutants on infiltration and swelling properties of compacted expansive clay[J]. Highway Engineering, 42(4): 251-254. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGL201704050.htm
    Wu X T, Xiang W, Wang Z H, et al. 2018. Microscopic mechanism of solidified silt with ionic soil stabilizer[J]. Journal of Engineering Geology, 26(5): 1285-1291. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201805022.htm
    Xiang G S, Ye W M, Yu F, et al. 2019. Surface fractal dimension of bentonite affected by long-term corrosion in alkaline solution[J]. Applied Clay Science, 175(4): 94-101. http://www.sciencedirect.com/science/article/pii/S0169131719301358
    Yang H P, Qu Y X, Zhen J L. 2005. New development in studies on Ningming expansive soils[J]. Chinese Jounal of Geotechnical Engineering, 27(9): 981-987. http://www.researchgate.net/publication/298246160_New_development_in_studies_on_Ningming_expansive_soils
    Yang S T, Ren X M, Zhao G X, et al. 2015. Competitive sorption and selective sequence of Cu(Ⅱ) and Ni(Ⅱ)on montmorillonite: Batch, modeling, EPR and XAS studies[J]. Geochimica et Cosmochimica Acta, 166(5): 129-145. http://www.sciencedirect.com/science/article/pii/S0016703715004032
    Yang Z P, Li D H, Deng R F, et al. 2019. An Experimental study for influence of freeze-thaw cycles on strength and pore characteristics of solidified lead-contaminated soil[J]. Journal of Engineering Geology, 27(3): 539-549. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201272957654.html
    Zha F S, Liu J J, Xia L, et al. 2014. Engineering properties of heavy metal contaminated Soil[J]. Chinese Journal of Underground Space and Engineering, 10 (S2): 1982-1985. http://en.cnki.com.cn/Article_en/CJFDTotal-BASE2014S2043.htm
    Zhang Q, Lei T, Jia J Y, et al. 2018. A Study on the impacts of heavy metal pollution on soil properties in Danyang region[J]. Journal of Engineering Geology, 26 (S1): 612-617.
    Zhang Y G, Han S, Wan D Y, et al. 2018. Experimental study on the physical properties of solidified heavy metal contaminated expansive soil with the cement[J]. Science Technology and Engineering, 18(31): 200-204. http://en.cnki.com.cn/Article_en/CJFDTotal-KXJS201831032.htm
    Zhang Z H, Li H Y, Shi Y M. 2014. Experimental study on permeability properties and micro-structure of clay contaminated by Cu2+[J]. China Civil Engineering Journal, 47(12): 122-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb201412015
    Zou W L, Chen L, Xie P, et al. 2012. Nonlinear strength property of remolded expansive soil and its stress-strain relationship for soaking after one-dimensional consolidation[J]. Rock and Soil Mechanics, 33 (S2): 59-64. http://www.researchgate.net/publication/288424966_Nonlinear_strength_property_of_remolded_expansive_soil_and_its_stress-strain_relationship_for_soaking_after_one-dimensional_consolidation
    查甫生, 刘晶晶, 夏磊, 等. 2014. 重金属污染土的工程性质试验研究[J]. 地下空间与工程学报, 10 (S2): 1982-1985. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2043.htm
    常锦, 杨和平, 肖杰, 等. 2019. 酸雨入渗对膨胀土抗剪强度的影响及微观试验研究[J]. 中南大学学报(自然科学版), 50(1): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201901026.htm
    陈学军, 陈议城, 宋宇, 等. 2019. Cu2+污染红黏土土性异变现象分析[J]. 工程地质学报, 27(5): 1010-1018. doi: 10.13544/j.cnki.jeg.2019030
    陈学军, 周兴, 宋宇, 等. 2017. 淋滤条件下Zn2+污染对红黏土强度损伤特征试验研究[J]. 工程地质学报, 25(5): 1264-1269. doi: 10.13544/j.cnki.jeg.2017.05.011
    程峰, 王星华. 2015. 重金属污染物侵入对岩石力学性能影响的研究[J]. 工程地质学报, 23(5): 910-917. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201505014.htm
    程峰. 2014. 重金属侵入下岩土的力学特性及固化机理研究[D]. 长沙: 中南大学.
    顾继光, 周启星, 王新. 2003. 土壤重金属污染的治理途径及其研究进展[J]. 应用基础与工程科学学报, 11(2): 143-151. doi: 10.3969/j.issn.1005-0930.2003.02.005
    郭爱国, 孔令伟, 陈建斌. 2006. 自由膨胀率试验的影响因素[J]. 岩土力学, 27(11): 1949-1953. doi: 10.3969/j.issn.1000-7598.2006.11.017
    冷挺, 唐朝生, 徐丹, 等. 2018. 膨胀土工程地质特性研究进展[J]. 工程地质学报, 26(1): 112-128. doi: 10.13544/j.cnki.jeg.2018.01.013
    李志清, 李涛, 胡瑞林, 等. 2008. 蒙自重塑膨胀土膨胀变形特性与施工控制研究[J]. 岩土工程学报, 30(12): 1855-1860. doi: 10.3321/j.issn:1000-4548.2008.12.014
    李志清, 余文龙, 付乐, 等. 2010. 膨胀土胀缩变形规律与灾害机制研究[J]. 岩土力学, 31 (S2): 270-275. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2050.htm
    唐朝生, 施斌. 2011. 湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报, 33(9): 1376-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109013.htm
    王宏胜, 唐朝生, 巩学鹏, 等. 2018. 生物炭修复重金属污染土研究进展[J]. 工程地质学报, 26(4): 1064-1077. doi: 10.13544/j.cnki.jeg.2017-360
    吴尚, 张昊. 2017. 重金属污染物对压实膨胀土渗透及膨胀特性影响研究[J]. 公路工程, 42(4): 251-254. doi: 10.3969/j.issn.1674-0610.2017.04.050
    吴雪婷, 项伟, 王臻华, 等. 2018. 离子土固化剂固化淤泥的微观机理研究[J]. 工程地质学报, 26(5): 1285-1291. doi: 10.13544/j.cnki.jeg.2018124
    杨和平, 曲永新, 郑健龙. 2005. 宁明膨胀土研究的新进展[J]. 岩土工程学报, 27(9): 981-987. doi: 10.3321/j.issn:1000-4548.2005.09.002
    杨忠平, 李登华, 邓仁峰, 等. 2019. 冻融循环对固化铅污染土强度与孔隙特征影响的试验研究[J]. 工程地质学报, 27(3): 539-549. doi: 10.13544/j.cnki.jeg.2018-147
    张庆, 雷廷, 贾军元, 等. 2018. 丹阳地区重金属污染对土体性质影响研究[J]. 工程地质学报, 26 (S1): 612-617. doi: 10.13544/j.cnki.jeg.2018164
    张玉国, 韩帅, 万东阳, 等. 2018. 水泥固化重金属污染膨胀土物理性质试验研究[J]. 科学技术与工程, 18(31): 200-204. doi: 10.3969/j.issn.1671-1815.2018.31.032
    张志红, 李红艳, 师玉敏. 2014. 重金属Cu2+污染土渗透特性试验及微观结构分析[J]. 土木工程学报, 47(12): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201412019.htm
    邹维列, 陈轮, 谢鹏, 等. 2012. 重塑膨胀土非线性强度特性及一维固结浸水膨胀应力-应变关系[J]. 岩土力学, 33 (S2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2008.htm
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  52
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2020-06-19
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回