EVALUATION OF SHEAR STRENGTH OF UNSATURATED LOESS USING CONVENTIONAL DIRECT SHEAR TEST
-
摘要: 为了研究一种简化的方法评价非饱和黄土抗剪强度,本文利用常规直剪仪对非饱和重塑黄土进行固结快剪试验,Whatman's No.42型滤纸测试固结前和剪切后土样吸力,研究同一正应力下初始吸力和剪后吸力的变化趋势及机理,并用非饱和直剪测试结果对常规直剪和滤纸法测得的吸力与强度进行了效验。研究表明,土-水特征曲线的进气值和残余值对固结前和剪切后干密度和吸力的变化起控制作用,获得初始吸力与剪后吸力的变化关系。基于Vanapalli模型,提出了利用土样初始土-水特征曲线、有效黏聚力和有效内摩擦角预测非饱和黄土抗剪强度的公式,研究结果简化了非饱和土强度测试方法,节约了时间,为非饱和土抗剪强度理论在工程实践中推广应用提供新思路。Abstract: In order to investigate the simplified method for evaluating the shear strength of unsaturated loess, we conduct a series of conventional consolidated quick shear test and the suction test before consolidation as well as after shearing using filter paper method. The data is validated by unsaturated direct shear test. Then we discuss the variation of initial suction and shear suction under normal stress. The research shows that air entry value and residual value of the soil-water characteristic curve control the change of dry density and water content within consolidating. Based on the Vanapalli's model, a simple method to predict the shear strength of loess is gained. The proposed model using the initial soil-water characteristic curve, effective cohesion and effective internal friction angle of soil simplifies the procedure and time of shear strength measurement for unsaturated soil. The model provides a novel technique for the application of unsaturated shear strength theory in engineering practice.
-
Key words:
- Direct shear test /
- Shear strength /
- Filter paper method /
- Suction /
- Soil-water characteristic curve
-
表 1 试验土样的基本物理指标
Table 1. Basic physical indicators of test soil samples
干密度ρd/g·cm-3 含水率w/% 天然密度ρ/g·cm-3 比重Gs 孔隙比e 液限WL/% 塑限WP/% 塑性指数IP/% 1.32 8.3 1.43 2.70 1.06 27.5 18.3 9.2 表 2 不同含水率下黄土的抗剪强度与吸力值
Table 2. Shear strength and suction value of loess under different water content
ρd/g·cm-3 ρd′/g·cm-3 W/% (ua-uw)/kPa 第1组 第2组 τ/kPa (ua-uw)′/kPa w′/% τ/kPa (ua-uw)′/kPa w′/% 1.570 1.577 2.0 38791.0 132.5 17747.6 2.2 129.0 10102.0 2.4 1.570 1.584 4.0 5183.9 112.8 1826.7 4.4 101.4 1469.0 5.0 1.570 1.591 6.0 1187.2 102.1 369.8 5.5 80.8 — — 1.570 1.594 8.0 414.5 55.0 60.8 7.8 65.5 79.0 8.6 1.570 1.595 9.0 248.5 67.7 62.6 8.5 65.0 55.1 9.2 1.570 1.599 12.0 90.2 62.6 40.0 12.0 60.6 — — 1.570 1.600 15.0 43.0 54.0 31.6 13.9 62.6 31.8 13.6 1.570 1.601 18.0 20.9 58.1 23.6 17.3 52.0 21.6 17.4 1.570 1.605 21.0 11.1 45.4 12.8 20.2 50.9 14.2 19.4 1.570 1.615 23.0 6.3 34.5 8.6 21.9 45.0 13.4 20.9 1.570 1.635 25.0 2.7 38.7 5.4 22.2 38.0 4.8 22.9 1.570 1.637 27.2 1.0 36.2 1.7 25.2 36.1 — — ρd为初始干密度;ρd′为剪后干密度;w为初始质量含水率;w′为剪后质量含水率;τ表示抗剪强度;ua-uw为初始吸力;(ua-uw)′为剪后吸力 表 3 非饱和直剪试验结果
Table 3. Unsaturated direct shear test results
剪后质量含水率w′/% 吸力(ua-uw)′/kPa 抗剪强度τ/kPa 28.8 10 18.9 13.9 40 71.9 8.3 80 75.3 7.8 200 79.3 表 4 SWCC参数拟合值
Table 4. Fitting parameters of SWCC
曲线类型/拟合参数 a/kPa m n θr/% R2 初始土-水特征曲线 12.1 0.71 2.15 14.0 0.98 剪后土-水特征曲线 10.4 0.81 1.15 14.0 0.99 -
ASTM. 2010. Standard test method for measurement of soil potential(suction) using filter paper(D5298-10)[S].USA: American Society for Testing and Materials, West Conshohocken. Bishop A W, Blight G E. 1963. Some aspects of effective stress in saturated and partly saturated soils[J]. Géotechnique, 13(3): 177-197. doi: 10.1680/geot.1963.13.3.177 Chao J H. 2017. Experimental study on soil-water characteristic curve of loess using filter paper method[J]. Xi'an: Chang'an University. Chu F, Shao S J, Chen C L. 2014. Experimental research on influences of dry density and vertical stress on soil-water characteristic curves of intact unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 32(2): 413-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201402023 Feuerharmel C, Gehling W, Bica A. 2006. The use of filter paper and suction plate methods for determining the soil-watercharacteristic curve of undisturbed colluvium soil[J]. Geotechnical Testing Journal, 29(5): 419-425. http://www.researchgate.net/publication/245403614_The_Use_of_Filter-Paper_and_Suction-Plate_Methods_for_Determining_the_Soil-Water_Characteristic_Curve_of_Undisturbed_Colluvium_Soils Fredlund D G, Sheng D C, Zhao J D. 2011. Estimation of soil suction from the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 48(2): 186-198. doi: 10.1139/T10-060 Fredlund D G, Morgensten N R, Windger R A. 1978. The shear strength of unsaturated soil[J]. Canadian Geotechnical Journal, 15(3): 313-321. doi: 10.1139/t78-029 Fredlund D G, Xing A. 1994. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 31(4): 521-532. doi: 10.1139/t94-061 Gu Q, Wang J D, Tong Y L, et al. 2016. Soil water characteristic curve test and simulation of unsaturated loess based on filter paper method[J]. Chinese Journal of Soil Science, 47(3): 588-593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb201603012 Hu S X, Zhou Y D, Chen Z H. 2005. Test study on strength character of unsaturated and undisturbed loess[J]. Rock and Soil Mechanics, 26(4): 660-663. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200504033 Huang K, Wan J W, Chen G, et al. 2012. Testing study of relationship between water content and shear strength of unsaturated soils[J]. Rock and Soil Mechanics, 33(9): 2600-2604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201209007 Leong E, He L, Rahardjo H. 2002. Factors affecting the filter method for total and matric suction measurements[J]. Geotechnical Testing, 25(3): 322-333. http://www.researchgate.net/publication/245403463_Factors_Affecting_the_Filter_Paper_Method_for_Total_and_Matric_Suction_Measurements Li P, Li T L, Wang H, et al. 2013. Soil-water characteristic curve and permeability perdiction on Childs & Collis-Geroge model of unsaturated loess[J]. Rock and Soil Mechanics, 34 (S2): 184-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2013z2030 Liu F Y, Zhang Z, Zhou D, et al. 2010. Debugging of GCTS-type SWCC device and analysis of the corresponding technical indexes[J]. Journal of Xi'an University of Technology, 26(3): 320-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xalgdxxb201003014 Liu M M. 2015. Hydraulic conductivity variation of Loess Slope in Southern tableland of Jingyang[D]. Xi'an: Chang'an University. Liu R. 2014. Experimental research on consolidation properties of loess based on soil water characteristic curve[D]. Xi'an: Chang'an University. Liu X H. 2012. Stress state-dependent soil-water characteristic curves and strength of loess-like backfill[D]. Taiyuan: Taiyuan University of Technology. Ma S K, Huang M S, Fan Q Y. 2009. Unsaturated soil starength theory based on total stress strength indexes of saturated soil and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 28(3): 635-640. http://d.old.wanfangdata.com.cn/Periodical_yslxygcxb200903025.aspx Oberg A L, Sallfors G. 1997. Determination of shear strength parameters of unsaturated silt and sands based on the water retention curve[J]. Geotechnical Testing Journal, 20(1): 40-48. doi: 10.1520/GTJ11419J Shen C N, Fang X W, Chen Z H. 2010. The Unsaturated direct shear tests of Q2 loess[J]. Chinese Journal of Underground Space and Engineering, 6(4): 724-728. http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE201004013.htm Tang C, Borden R, Gabr M. 2018. A simplified direct shear testing procedure to evaluate unsaturated shear strength[J]. Geotechnical Testing Journal, 41(2): 223-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=370a1706a6bca1f3403fe3bbfe8164de Tang D Q, Peng J B, Sun W Q. 2012. Matrix suction test based on the filter paper method for unsaturated loess[J]. Coal Geology and Exploration, 40(5): 37-41. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201205014.htm Vanapalli S K, Fredlund D G, Pufahl D E, et al. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33(3): 379-392. doi: 10.1139/t96-060 Wu Y L, Xiang W, Zhao D. 2011. Research on soil-water characteristic curve of unsaturated Malan Loess[J]. Safety and Environmental Engineering, 18(4): 39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq201104010 Xing X L, Li T L, Ju K L, et al. 2015. Research on the staength parameters of unsaturated loess[J]. Journal of Engineering Geology, 23(2): 252-259. Xu Y F. 2004. Fractal approach to unsaturated shear strength[J]. Geotech. Geoenviron. Eng, 130(3): 264-273. doi: 10.1061-(ASCE)1090-0241(2004)130-3(264)/ Yang Y B, Zhan L T, Wang S Y, et al. 2015. Measurement of gas permeability of cover loess and one-dimensional analysis of landfill gas emission[J]. Rock and Soil Mechanics, 36(7): 1937-1980. http://d.old.wanfangdata.com.cn/Periodical/ytlx201507019 Zhai D L, Ma P H. 2019. Analysis on residual strength of typical loess: a case study at South Jingyang platform[J]. The Chinese Journal of Geological Hazard and Control, 30(2): 120-127. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201902017 Zhao T Y, Wang J F. 2012. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University(Science and Technology), 43(6): 2445-2453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201206061 Zheng G F, Guo X X, Shao L T. 2019. Experimental verification of an unsaturated shear strength criterion based on the state surface expression[J]. Rock and Soil Mechanics, 40(4): 1441-1448. http://d.old.wanfangdata.com.cn/Periodical/ytlx201904025 Zheng J, Zhao L Y, Liu B J. 2015. Experimental study on soil water characteristic curves of unsaturated loess[J]. South-to-North Water Transfers and Water Science & Technology, 13(6): 1138-1142. http://www.cnki.com.cn/Article/CJFDTotal-NSBD201506025.htm Zhu L F, Hu W, Zhang M S, et al. 2013. An analysis of the soil mechanical preoperties involved in loess landslides in Heifangtai, Gansu Province[J]. Geological Bulletin of China, 32(6): 881-886. http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201306009.htm 边加敏, 王保田. 2010.含水量对非饱和土抗剪强度影响研究[J].人民黄河, 32 (11): 124~125. http://d.old.wanfangdata.com.cn/Periodical/rmhh201011055 晁建红. 2017.基于滤纸法的黄土土-水特征曲线测试[D].西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1017868784.htm 褚峰, 邵生俊, 陈存礼. 2014.干密度和竖向应力对原状非饱和黄土土水特征影响的试验研究[J].岩石力学与工程学报, 33(2): 413-420. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201402023 谷琪, 王家鼎, 仝云莉, 等. 2016.滤纸法测非饱和黄土土水特征曲线试验及拟合研究[J].土壤通报, 47(3): 588-593. http://d.old.wanfangdata.com.cn/Periodical/trtb201603012 扈胜霞, 周云东, 陈正汉. 2005.非饱和原状黄土强度特性的试验研究[J].岩土力学, 26(4): 660-663. doi: 10.3969/j.issn.1000-7598.2005.04.033 黄琨, 万军伟, 陈刚, 等. 2012.非饱和土的抗剪强度与含水率关系的试验研究[J].岩土力学, 33(9): 2600-2604. http://d.old.wanfangdata.com.cn/Periodical/ytlx201209007 李萍, 李同录, 王红, 等. 2013.非饱和黄土土-水特征曲线与渗透系数Childs & Collis-Geroge模型预测[J].岩土力学, 34 (S2): 184-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2013z2030 林涛. 2018.非饱和土强度特性试验[J].公路交通科技(应用技术版), 14 (11): 34~38. http://d.old.wanfangdata.com.cn/Periodical/ytlx200903011 刘奉银, 张昭, 周冬, 等. 2010.影响GCTS土水特征曲线仪试验结果的因素及曲线合理性分析[J].西安理工大学学报, 26(3): 320-325. doi: 10.3969/j.issn.1006-4710.2010.03.014 刘蒙蒙. 2015.泾阳县南塬黄土边坡渗透系数变异性分析[D].西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1015801609.htm 刘茹. 2014.基于土-水特征曲线的黄土压缩特性试验研究[D].西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070967.htm 刘新华. 2012.黄土状填土应力相关的土水特征曲线及其强度[D].太原: 太原理工大学. http://d.wanfangdata.com.cn/Thesis_Y2155867.aspx 马少坤, 黄茂松, 范秋雁. 2009.基于饱和土总应力强度指标的非饱和土强度理论及其应用[J].岩石力学与工程学报, 28(3): 635-640. doi: 10.3321/j.issn:1000-6915.2009.03.025 申春妮, 方祥位, 陈正汉. 2010. Q2黄土的非饱和直剪试验研究[J].地下空间与工程学报, 6(4): 724-728. http://d.old.wanfangdata.com.cn/Periodical/dxkj201004012 沈细中. 2011.水库土质库岸崩塌与防治[M].北京:中国水力水电出版社. 孙文静, 孙德安. 2018.非饱和土力学试验技术[M].北京:中国水利水电出版社. 唐东旗, 彭建兵, 孙伟青. 2012.非饱和黄土基质吸力的滤纸法测试[J].煤田地质与勘探, 40(5): 37-41. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201205013 王铁行, 卢靖, 岳彩坤. 2008.考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J].岩土力学, (1): 1-5. doi: 10.3969/j.issn.1000-7598.2008.01.001 吴元莉, 项伟, 赵冬. 2011.非饱和马兰黄土土-水特征曲线研究[J].安全与环境工程, 18(4): 39-42. doi: 10.3969/j.issn.1671-1556.2011.04.010 邢鲜丽, 李同录, 巨昆仑, 等. 2015.非饱和黄土强度参数的试验研究[J].工程地质学报, 23(2): 252-259. doi: 10.13544/j.cnki.jeg.2015.02.009 杨益彪, 詹良通, 王顺玉, 等. 2015.封顶覆盖黄土气体渗透特性测试及填埋气一维运移分析[J].岩土力学, 36(7): 1973-1980. http://d.old.wanfangdata.com.cn/Periodical/ytlx201507019 翟栋梁, 马鹏辉. 2019.典型黄土残余强度变化规律分析--以陕西泾阳南塬黄土为例[J].中国地质灾害与防治学报, 30(2): 120-127. http://www.cqvip.com/QK/98314X/20192/90716872504849574850484956.html 赵天宇, 王锦芳. 2012.考虑密度与干湿循环影响的黄土土水特征曲线[J].中南大学学报(自然科学版), 43(6): 2445-2453. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201206061 郑国锋, 郭晓霞, 邵龙潭. 2019.基于状态曲面的非饱和土强度准则及其验证[J].岩土力学, 40(4): 1441-1448. http://d.old.wanfangdata.com.cn/Periodical/ytlx201904025 郑娟, 赵丽娅, 刘保健. 2015.非饱和黄土的土水特征曲线试验研究[J].南水北调与水利科技, 13(6): 1138-1142. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201506025 朱立峰, 胡炜, 张茂省, 等. 2013.甘肃永靖黑方台地区黄土滑坡土的力学性质[J].地质通报, 32 (6): 881-886. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201306009 -