不同降雨条件下不稳定斜坡财产损失风险评价——以镇巴县兴隆镇为例

宋宇飞 范文 李军 杜珣

宋宇飞, 范文, 李军, 等. 2020. 不同降雨条件下不稳定斜坡财产损失风险评价———以镇巴县兴隆镇为例[J]. 工程地质学报, 28(2): 401- 411. doi: 10.13544/j.cnki.jeg.2019-255
引用本文: 宋宇飞, 范文, 李军, 等. 2020. 不同降雨条件下不稳定斜坡财产损失风险评价———以镇巴县兴隆镇为例[J]. 工程地质学报, 28(2): 401- 411. doi: 10.13544/j.cnki.jeg.2019-255
Song Yufei, Fan Wen, Li Jun, et al. 2020. Risk assessment of property loss caused by unstable slopes under different rainfall conditions—A case study of Xinglong town of Zhenba county[J]. Journal of Engineering Geology, 28(2): 401-411. doi: 10.13544/j.cnki.jeg.2019-255
Citation: Song Yufei, Fan Wen, Li Jun, et al. 2020. Risk assessment of property loss caused by unstable slopes under different rainfall conditions—A case study of Xinglong town of Zhenba county[J]. Journal of Engineering Geology, 28(2): 401-411. doi: 10.13544/j.cnki.jeg.2019-255

不同降雨条件下不稳定斜坡财产损失风险评价——以镇巴县兴隆镇为例

doi: 10.13544/j.cnki.jeg.2019-255
基金项目: 

国家自然科学基金项目 41402254

国家自然科学基金项目 41602281

中国地质调查项目 12120115045601

详细信息
    作者简介:

    宋宇飞(1992-),男,博士,主要从事山区地质灾害风险评价方面的研究. E-mail: 979856894@qq.com

    通讯作者:

    范文(1967-),男,博士,教授,博士生导师,主要从事山区地质灾害、黄土微观力学等方面的研究. E-mail: fanwen@chd.edu.cn

  • 中图分类号: P642.A

RISK ASSESSMENT OF PROPERTY LOSS CAUSED BY UNSTABLE SLOPES UNDER DIFFERENT RAINFALL CONDITIONS—A CASE STUDY OF XINGLONG TOWN OF ZHENBA COUNTY

Funds: 

This study is supported by the National natural Science Foundation of China 41402254

This study is supported by the National natural Science Foundation of China 41602281

China Geological Survey Project 12120115045601

  • 摘要: 山区城镇化的加速发展使得切坡、削坡现象普遍发生,导致城镇周边隐患斜坡的数量增加、规模增加,诱发隐患斜坡转变为滑坡的临界降雨强度降低,城镇财产损失风险大大提升。如何准确地对不同强度降雨条件下城镇财产损失的风险进行评价是亟待解决的前沿问题,本文以镇巴县兴隆镇为例,通过收集研究区多年降雨数据集,利用皮尔逊三型水文模型得到研究区不同重现期下的降雨强度,在此基础上结合野外斜坡调查资料、岩土体实验数据,采用蒙特-卡洛法计算得到城镇周边不稳定斜坡在不同降雨条件下的破坏概率,并对斜坡影响范围内的承灾体的易损性和财产价值进行评价,最终根据财产风险计算公式得到各斜坡在不同降雨工况下的财产损失风险值。风险计算结果表明:城镇内受不稳定斜坡威胁的房屋共245栋,占总房屋数量的30.4%,城镇房屋总价值约为5260.4万元,在天然、10年、20年、50年一遇降雨条件下年损失财产价值分别为22.8万元、69.73万元、122.5万元、150.5万元,其中超过55%的财产损失均是由1-2、2-6、3-5、4-3这4个边坡造成,并且在降雨强度递增时,这4个边坡对财产损失风险的贡献在逐步降低,占比分别为:88.33%、62.9%、58.64%以及57.54%,可见只要对这4个斜坡进行必要的防治即可大幅地缩减财产损失。
  • 图  1  理论降雨强度-重现期分布曲线

    Figure  1.  Curve of rainfall intensity and recurrence period

    图  2  兴隆镇周边斜坡土层厚度调查点

    Figure  2.  Thickness point of slope soil around Xinglong town

    图  3  斜坡2-6工程地质剖面图

    Figure  3.  Profile of slope 2-6

    图  4  斜坡2-6在不同降雨条件下的计算模型

    a.天然状态计算模型;b. 20年一遇降雨计算模型

    Figure  4.  The model of slope 2-6 under different rainfall conditions

    图  5  斜坡2-6在不同降雨条件下的安全系数分布情况

    a.天然状态安全系数分布;b. 20年一遇降雨安全系数分布

    Figure  5.  The safety factor distribution of slope 2-6 under different rainfall conditions

    图  6  斜坡在不同降雨工况下的破坏概率

    a.天然状态;b. 10年一遇;c. 20年一遇;d. 50年一遇

    Figure  6.  Failure probability of slopes under different rainfall conditions

    图  7  房屋易损性值分布图

    Figure  7.  Vulnerability of house

    图  8  房屋财产价值分布图

    Figure  8.  Building value distribution

    图  9  房屋/斜坡不同降雨条件下(连续五日)财产损失风险值分布图

    a.天然状态;b. 10年一遇;c. 20年一遇;d. 50年一遇

    Figure  9.  Distribution of property loss risk under different rainfall conditions(5 consecutive days) for housing/slope

    图  10  各斜坡在不同降雨条件下(连续五日)财产损失风险值分布图

    a.天然状态;b. 10年一遇;c. 20年一遇;d. 50年一遇

    Figure  10.  Property loss risk distribution of each slope under different rainfall conditions(5 consecutive days)

    表  1  5日累计降雨量极值分布的参数估计

    Table  1.   Parameters of accumulative rainfall peak distribution curve under 5 days continuous rainfall

    求参方法 x Cv Cs
    最小二乘适线法 41.77 0.4252 0.87
    下载: 导出CSV

    表  2  不同降雨历时和重现期下的降雨强度(单位:mm ·d-1)

    Table  2.   Rainfall intensity under different rainfall durations and recurrence periods

    降雨历时/d 重现期/a
    10 20 50
    5 65.57 72.88 85.91
    下载: 导出CSV

    表  3  兴隆镇周边斜坡岩土体物理力学参数表

    Table  3.   Physical-mechanical parameters of soil on slope around Xinglong town

    岩土
    类型
    类别 黏聚力C/kPa 内摩擦角φ/(°)
    天然
    状态
    饱和
    状态
    天然
    状态
    饱和
    状态
    碎石土 均值μ 18.0 15.0 17.1 15.1
    方差σ 1.8 3.4 0.67 4.65
    强风化
    粉砂岩
    均值μ 15 12.3 25.0 23.6
    方差σ 0.81 2.05 1.46 2.14
    下载: 导出CSV

    表  4  滑坡冲击力强度指标的取值

    Table  4.   Landslide impact strength index

    滑坡冲击力/建筑物水平方向极限承载力 Ipre
    < 0.1 0.05
    0.1~0.2 0.2
    0.2~0.4 0.4
    0.4~0.7 0.7
    0.7~1.0 0.9
    >1.0 1.0
    下载: 导出CSV

    表  5  建筑物的水平极限抵抗力

    Table  5.   Horizontal resistance of buildings

    建筑结构体 水平抗力/kPa
    无门窗的砖瓦填充墙面 7.6~8.9
    有门窗的砖瓦填充墙面 5.5
    石块填充墙面(长度4 m,厚度40 cm) 6.8~9
    石块填充墙面(长度4 m,厚度60 cm) 10~13
    弱非抗震钢混结构(1~3层) 4.5~8
    强非抗震钢混结构(4~7层) 5~9
    弱抗震钢混结构(多层) 5~10
    强抗震钢混结构(多层) 6~14
    下载: 导出CSV

    表  6  运动滑体深度强度指标的取值

    Table  6.   Index of landslide mass depth

    运动滑体深度/建筑物上部结构高度 If-dep
    < 0.2 0.1
    0.2~0.4 0.3
    0.4~0.6 0.5
    0.6~0.8 0.7
    0.8~1.0 0.9
    >1.0 1.0
    下载: 导出CSV

    表  7  建筑结构类型脆弱性指标取值

    Table  7.   The vulnerability index of building structure

    建筑结构类型 脆弱性 Sstr
    轻质简易结构 较强 0.90
    土木结构 0.70
    砖木结构 0.50
    砖混结构 较低 0.30
    钢结构 极低 0.10
    下载: 导出CSV

    表  8  建筑物在不同维护状况下的脆弱性指标

    Table  8.   Vulnerability index of buildings under different maintenance conditions

    维护状况 Smat 描述
    非常好 0.00 无任何变形、开裂及材料老化
    0.05 仅在建筑物墙体表面出现类似于发丝的细小裂纹
    轻微变形 0.25 墙体出现极细小裂缝,宽度小于0.1 mm
    中等变形 0.50 地基出现较小的沉降
    严重变形 0.75 墙体倾斜;地板翘起;墙体出现张裂缝
    极严重变形 1.00 结构极度歪斜;部分墙体倒塌;基础失去支撑;管线中断
    下载: 导出CSV

    表  9  建筑物使用年限脆弱性指标取值

    Table  9.   Vulnerability index of building service life

    使用年限与设计寿命比值 Sser
    ≤0.1 0.05
    0.1~0.4 0.10
    0.4~0.6 0.30
    0.6~0.8 0.50
    0.8~1.0 0.70
    1.0~1.2 0.80
    >1.2 1.00
    下载: 导出CSV

    表  10  房屋价值评估表

    Table  10.   Building valuation

    用途 结构类型 修建时间 每间价值/万元
    商用 砖混 2000年以后 4
    2000年以前 3
    砖木 2000年以后 3
    2000年以前 2.5
    民用 活动板房 0.2
    土木 2000年以后 0.5
    2000年以前 0.3
    砖木 2000年以后 1.5
    2000年以前 1
    砖混 2000年以后 2.3
    2000年以前 1.8
    下载: 导出CSV
  • Beven K, Robert E. 2004. Horton's perceptual model of infiltration processes[J]. Hydrological Processes, 18(17): 3447-3460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/hyp.5740
    Cascini L. 2008. Applicability of landslide susceptibility and hazard zoning at different scales[J]. Engineering Geology, 102(3-4): 164-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25685afe14fb729fe494283a7946ec4
    Chau K T, Sze Y L, Fung M K, et al. 2004. Landslide hazard analysis for Hong Kong using landslide inventory and GIS[J]. Computers & Geosciences, 30(4): 429-443. http://cn.bing.com/academic/profile?id=68a86660bbdff4e85bf6ffc1556381fe&encoded=0&v=paper_preview&mkt=zh-cn
    Dai F C, Lee C F, Ngai Y Y. 2001. Landslide risk assessment and management: an overview[J]. Engineering Geology, 64(1): 65-87. http://d.old.wanfangdata.com.cn/Periodical/dzlp200706014
    Du J. 2012. Risk assessment of individual landslide[D]. Wuhan: China University of Geosciences(Wuhan).
    Fan W, Lü J J, Cao Y B, et al. 2019. Characteristics and block kinematics of a fault-related landslide in the Qinba Mountains, western China[J]. Engineering Geology, 249 : 162-171. http://cn.bing.com/academic/profile?id=2d8b3050d0b174c05a1d958b3c15b7f6&encoded=0&v=paper_preview&mkt=zh-cn
    Fan W, Wei X S, Cao Y B, et al. 2017. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process[J]. Journal of Mountain Science, (5): 100-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkxxb-e201705008
    Fell R, Ho K K S, Lacasse S, et al. 2005. Aframe work for land slide risk assess ment and management[C]//Hungr O, Fell R, Couture R, et al. Land slide Risk Management. Vancouver, Canada: AAbalkema Publishers.
    Guzzetti F, Carrara A, Cardinali M, et al. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy[J]. Geomorphology, 31(1-4): 181-216. doi: 10.1016-S0169-555X(99)00078-1/
    Huang Z P. 2003. Hydrological statistics[M]. Nanjing: Hohai University Press.
    Li N, Xu J C, Qin Y Z. 2012. Research on calculation model for stability evaluation of rainfall-induced shallow landslides[J]. Rock and Soil Mechanics, 33(5): 1485-1490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201205033
    Liu Y H, Zhang Z X, Su Y C. 2018. Case study of vulnerability evaluation for geo-hazards bearing capacity of a region[J]. Journal of Engineering Geology, 26(5): 1121-1130. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805002
    Luo C, Yin K L, Chen L X, et al. 2005. Probability distribution fitting and optimization of shear strength parameters in sliding zone along horizontal-stratum landslides inWanzhou city[J]. Chinese Journal of Rock Mechanics and Engineering, 24(9): 1588-1593. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX20050900J.htm
    Mattauer M, Matte P, Malavieille J, et al. 1985. Tectonics of the Qinling Belt: build-up and evolution of eastern Asia[J]. Nature, 317(6037): 496-500. http://cn.bing.com/academic/profile?id=ff6186354c3d87a395e8cf1261ddc775&encoded=0&v=paper_preview&mkt=zh-cn
    Negulescu C, Foerster E. 2010. Parametric studies and quantitative assessment of the vulnerability of a rc frame building exposed to differential settlements[J]. Natural Hazards and Earth System Sciences, 10(9): 1781-1792. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_013581a9cf04d47a2f610aa80a943a85
    Tang Y M. 2008. Loess slope stability analysis based on reliability[J]. Geological Bulletin of China, 27(8): 1217-1222. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201901010
    Undha. 1992. Internationally agreed glossary of basis terms related to disaster management[R]. Geneva: United Nations Department of Humanitarian Affairs.
    Vanes D J. 1984. Landslide hazard zonation: A review of principles and practice[R]. Paris: United Nations International.
    Valentine G A. 1998. Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects[J]. Journal of Volcanology & Geothermal Research, 87(1-4): 117-140. http://cn.bing.com/academic/profile?id=ee9faadf21255dff3aa05c66ea40dd4b&encoded=0&v=paper_preview&mkt=zh-cn
    Wei T T, Fan W, Yu N Y. 2017. Method of zoning of regional slope stability based on typical profiles analysis[J]. Journal of Engineering Geology, 25(6): 1518-1526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201706016
    Wu S R, Shi J S, Zhang C S, et al. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletinof China, 28(8): 995-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200908001
    Wu S R. 2012. Landslide risk assessment theory and technology[M]. Beijing: Science Press.
    Wu Y, Liu D S, Li M J. 2011. Impactenergy calculation for rock slope and quantitative assessment of vulnerability for elementat risk[J]. Chinese Journal of Rock Mechanics and Engineering, 30(5): 901-909. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201105006.htm
    Wu Y, Liu D S, Lu X, et al. 2010. A quantitative assessment model for property risk caused by single landslide[J]. Rock and Soil Mechanics, 31 (S2): 342-348. http://cn.bing.com/academic/profile?id=95fb287f956c54fc79a3bbe4ca6a8d85&encoded=0&v=paper_preview&mkt=zh-cn
    Xiang X Q, Huang R Q. 2000. Risk assessment and risk management for slope geohazards[J]. Journal of Geological Hazards and Environment Preservation, 11(1): 38-41. http://www.cnki.com.cn/article/cjfd2000-dzhb200001007.htm
    Xu Q, Zhang Y F, Chen W. 2010. Vulnerability assessment of geo-hazards in southwest mountainous area——Danba County, Sichuan, China as an example[J]. Geological Bulletin of China, 29(5): 729-738. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201005013.htm
    Xu J C, Shang Y Q. 2008. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics, 29(1): 106-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200801020
    Xue Q, Zhang M S, Gao B, et al. 2018. Risk assessment of geological hazards in Suide city, Shaanxi Province[J]. Journal of Engineering Geology, 26(3): 711-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201803019
    杜娟. 2012.单体滑坡灾害风险评价研究[D].武汉: 中国地质大学(武汉).
    黄振平. 2003.水文统计学[M].南京:河海大学出版社.
    刘艳辉, 张振兴, 苏永超. 2018.地质灾害承灾载体脆弱性评价方法研究[J].工程地质学报, 26(5): 1121-1130. doi: 10.13544/j.cnki.jeg.2017-560
    李宁, 许建聪, 钦亚洲. 2012.降雨诱发浅层滑坡稳定性的计算模型研究[J].岩土力学, 33(5): 1485-1490. http://d.old.wanfangdata.com.cn/Periodical/ytlx201205033
    罗冲, 殷坤龙, 陈丽霞, 等. 2005.万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报, 24(9): 1588-1593. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200509020
    唐亚明. 2008.基于可靠度的黄土斜坡稳定性分析[J].地质通报, 27 (8): 1217-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200808018
    魏婷婷, 范文, 于宁宇. 2017.基于典型剖面分析的区域斜坡稳定性分区方法[J].工程地质学报, 25(6): 1518-1526. doi: 10.13544/j.cnki.jeg.2017.06.015
    吴树仁, 石菊松, 张春山, 等. 2009.地质灾害风险评估技术指南初论[J].地质通报, 28(8): 995-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200908001
    吴树仁. 2012.滑坡风险评估理论与技术[M].北京:科学出版社.
    吴越, 刘东升, 陆新, 等. 2010.单体滑坡灾害财产风险定量评估模型[J].岩土力学, 31 (S2): 342-348. http://d.old.wanfangdata.com.cn/Conference/7415428
    吴越, 刘东升, 李明军. 2011.岩体滑坡冲击能计算及受灾体易损性定量评估[J].岩石力学与工程学报, 30(5): 901-909. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201105005
    许强, 张一凡, 陈伟. 2010.西南山区城镇地质灾害易损性评价方法——以四川省丹巴县城为例[J].地质通报, 29(5): 729-738. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201005013
    薛强, 张茂省, 高波, 等. 2018.陕西省绥德县城区地质灾害风险评估[J].工程地质学报, 26(3): 711-719. doi: 10.13544/j.cnki.jeg.2017-205
    许建聪, 尚岳全. 2008.降雨作用下碎石土滑坡解体变形破坏机制研究[J].岩土力学, 29(1): 106-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200801020
    向喜琼, 黄润秋. 2000.地质灾害风险评价与风险管理[J].地质灾害与环境保护, 11 (1): 38-41. http://www.cnki.com.cn/article/cjfd2000-dzhb200001007.htm
  • 加载中
图(10) / 表(10)
计量
  • 文章访问数:  2355
  • HTML全文浏览量:  457
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-19
  • 修回日期:  2019-11-04
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回