EFFECT OF PARTICLE BREAKAGE ON COMPRESSION PROPERTIES OF CALCAREOUS SANDS WITH OEDOMETER TESTS
-
摘要: 利用南海钙质砂和阿拉伯湾钙质砂,进行侧限压缩试验,对其压缩特性进行分析,得到了相应的压缩指数;采用相对破碎率为度量指标,评价了钙质砂在压缩试验过程中的颗粒破碎情况。同时根据试验数据得到了不同初始相对密实度的砂样的塑性功,通过建立塑性功与相对破碎率以及塑性功与压缩指数之间的关系,探讨了颗粒破碎对钙质砂压缩特性的影响。研究显示,在本次试验条件下,颗粒破碎是导致钙质砂压缩变形的主要因素,钙质砂的中值粒径以及碳酸钙含量等因素对其颗粒破碎程度有明显影响;钙质砂的相对破碎率与其输入的塑性功有关,并且受到初始相对密实度的影响,采用相对密实度进行归一化后,两者呈现较好的幂函数关系;通过建立钙质砂压缩指数与塑性功之间的关系,进一步建立了钙质砂的压缩指数与相对破碎率之间的关系,经相对密实度归一化后,两者也呈现幂函数规律,此规律可以用于评价颗粒破碎对钙质砂压缩特性的影响。Abstract: This paper analyzes the compression characteristics of calcareous sands from the South China Sea and the Arabian Gulf through a series of oedometer tests. Based on the test results, we obtain the compression index and the plastic work of sand samples with different initial relative density values. At the same time, we evaluate the sand breakage with relative breakage index proposed by Hardin. The relationship between plastic work and relative breakage index as well as compression index is studied to discuss the influence of particle breakage on compression characteristics of calcareous sands. The results show that the mean diameter and the content of calcium carbonate have a significant effect on particle breakage, which is the main factor inducing the compression deformation of calcareous sands. The relative breakage index of calcareous sands mainly associates with the plastic work and the initial relative density. The relationship between relative breakage index and plastic work is a power function by normalizing of relative density. The power function is also satisfactory for the relationship between compression index and relative breakage index. It could be used to evaluate the effect of particle breakage on the compression characteristics of calcareous sands.
-
Key words:
- Calcareous sands /
- Particle crushing /
- Plastic work /
- Oedometer test
-
表 1 各砂样基本物理参数
Table 1. Basic physical parameters of sample
砂样 emax emin ρdmin
/g·cm-3ρdmax
/g·cm-3d50
/mm碳酸钙含量
/%砂样1 1.32 0.83 1.205 1.523 0.40 91.85 砂样2 1.0 0.51 1.393 1.853 0.15 91.85 砂样3 1.26 0.78 1.234 1.569 0.13 91.85 砂样4 0.83 0.54 1.522 1.806 0.13 80.93 -
Bai X Y. 2010. Study on engineering character of calcareous soil[D]. Qingdao: Qingdao University of Technology. Chen H Y, Wang R, Li J G, et al. 2005. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 26(9): 1389-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200509008 Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806012 Chuhan F A, Kjeldstad A, Bjorlykke K, et al. 2011. Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins[J]. Canadian Geotechnical Journal, 40(5): 995-1011. http://www.researchgate.net/publication/237371794_Experimental_compression_of_loose_sands_relevance_to_porosity_reduction_during_burial_in_sedimentary_basins Einav I. 2007. Breakage mechanics-Part Ⅰ: Theory[J]. Journal of the Mechanics and Physics of Solids, 55(6): 1274-1297. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027716581/ Fawad A, Chuhan A K, Knut J, et al. 2003. Experimental compression of loose cands: Relevance to porosity reduction during burial in sedimentory basins[J]. Canadian Geotechnical Journal, 40(5): 995-1011. http://www.researchgate.net/publication/237371794_Experimental_compression_of_loose_sands_relevance_to_porosity_reduction_during_burial_in_sedimentary_basins Hardin B O. 1985. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 111(10): 177-1192. http://www.researchgate.net/publication/248877597_Crushing_of_Soil_Particles Le T C, Gu Y F, Liu C, et al. 2018. Experiment and DEM numerical simulation for influence of particle size distribution and shape on compressibility of sand[J]. Journal of Engineering Geology, 26 (S): 539-546. Li S, Liu F S, Dai X, et al. 2019. Indoor experimental study of the effect of calcium carbonate content on properties of calcareous sand[J]. Journal of Experimental Mechanics, 34(1): 88-94. http://d.old.wanfangdata.com.cn/Periodical/sylx201901011 Liang J, Liu H L, Gao Y F. 2003. Creep mechanism and breakage behavior of rockfill[J]. Rock and Soil Mechanics, 24(3): 479-483. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX200303036.htm Liu C Q, Wang R. 1998. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 19(1): 32-37. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX199801005.htm Liu H L, Qin H Y, Gao Y F, et al. 2005. Experimental Study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 26(4): 562-566. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200504011.htm Ma Q F, Liu H L, Xiao Y, et al. 2018. Compression and particle breakage features of calcareous sand under high stress[J]. Journal of Disaster Prevention and Mitigation Engineering, 38(6): 1020-1025. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201806017 Mao Y Y, Lei X W, Meng Q S, et al. 2017. Status quo of indwelling population development in Danjiangkou Reservoir area and countermeasures[J]. Yangtze River, 48(9): 75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmcj201709023 Marsal R J. 1967. Large-scale testing of rockfill materials[J]. Journal of Soils Mechanics and Foundation Division, ASCE, 93(2): 27-43. Nakata Y, Kato Y, Hyodo M, et al. 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength[J]. Soils and Foundations, 41(2): 39-51. Shen J H, Wang R. 2010. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 18 (S): 26-32. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806012 Wang Y, Zhang S, Ao D H, et al. 2018. Particle breakage characteristics of rockfills under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 40(4): 698-706. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201804014 Wu J P, Zhu Y, Lou Z G. 1997. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 19(5): 49-55. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC705.007.htm Yang G, Zhang B Y, Yu Y Z, et al. 2010. An experimental study on particle breakage of coarse-grained materials under various stress paths[J]. Journal of Hydraulic Engineering, 41(3): 338-342. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201003012 Yuan Z, Yu K F, Wang Y H, et al. 2016. Research progress in the engineering geological characteristics of coral reefs[J]. Tropical Geography, 36(1): 87-93. http://en.cnki.com.cn/Article_en/CJFDTotal-RDDD201601013.htm Zhang J M, Wang R, Shi X F, et al. 2005. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 24(18): 3327-3331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200518022 Zhu S, Ning Z Y, Zhong C X, et al. 2018. Study on particle crush and deformation characteristics considering rockfill gradation effect[J]. Journal of Hydraulic Engineering, 49(7): 849-857. http://d.old.wanfangdata.com.cn/Periodical/slxb201807009 白晓宇. 2010.钙质岩土工程性状研究[D].青岛: 青岛理工大学. http://d.wanfangdata.com.cn/Thesis_Y1802969.aspx 陈海洋, 汪稔, 李建国, 等. 2005.钙质砂颗粒的形状分析[J].岩土力学, 26(9): 1389-1392. http://d.old.wanfangdata.com.cn/Periodical/ytlx200509008 陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变及强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519 乐天呈, 顾颖凡, 刘春, 等. 2018.级配与颗粒形态对砂土压缩性影响的试验和离散元数值模拟[J].工程地质学报, 26(增): 539-546. doi: 10.13544/j.cnki.jeg.2018082 李飒, 刘富诗, 戴旭, 等. 2019.碳酸钙含量对钙质砂性质影响的室内试验研究[J].实验力学, 34(1): 88-94. http://d.old.wanfangdata.com.cn/Periodical/sylx201901011 梁军, 刘汉龙, 高玉峰. 2003.堆石蠕变机理分析与颗粒破碎特性研究[J].岩土力学, 24(3): 479-483. http://d.old.wanfangdata.com.cn/Periodical/ytlx200303032 刘崇权, 汪稔. 1998.钙质砂物理力学性质初探[J].岩土力学, 19(1): 32-37. http://www.cnki.com.cn/Article/CJFDTotal-YTLX199801005.htm 刘汉龙, 秦红玉, 高玉峰, 等. 2005.堆石粗粒料颗粒破碎试验研究[J].岩土力学, 26(4): 562-566. http://d.old.wanfangdata.com.cn/Periodical/ytlx200504011 马启锋, 刘汉龙, 肖杨, 等. 2018.高应力作用下钙质砂压缩及颗粒破碎特性试验研究[J].防灾减灾工程学报, 38(6): 1020-1025. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201806017 毛炎炎, 雷学文, 孟庆山, 等. 2017.考虑颗粒破碎的钙质砂压缩特性试验研究[J].人民长江, 48(9): 75-78. http://d.old.wanfangdata.com.cn/Periodical/rmcj201709018 沈建华, 汪稔. 2010.钙质砂的工程性质研究进展与展望[J].工程地质学报, 18(增): 26-32. http://www.gcdz.org/article/id/10112 王远, 张胜, 敖大华, 等. 2018.复杂应力路径下堆石料的颗粒破碎特性研究[J].岩土工程学报, 40(4): 698-706. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201804014 吴京平, 褚瑶, 楼志刚. 1997.颗粒破碎对钙质砂变形及强度特性的影响[J].岩土工程学报, 19(5): 49-55. http://www.cnki.com.cn/Article/CJFDTotal-YTGC705.007.htm 杨光, 张丙印, 于玉贞, 等. 2010.不同应力路径下粗粒料的颗粒破碎试验研究[J].水利学报, 41(3): 338-342. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201003012 袁征, 余克服, 王英辉, 等. 2016.珊瑚礁岩土的工程地质特性研究进展[J].热带地理, 36(1): 87-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rddl201601013 张家铭, 汪稔, 石祥锋, 等. 2005.侧限条件下钙质砂压缩和破碎特性试验研究[J].岩石力学与工程学报, 24(18): 3327-3331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200518022 朱晟, 宁志远, 钟春欣, 等. 2018.考虑级配效应的堆石料颗粒破碎与变形特性研究[J].水利学报, 49 (7): 849-857. http://d.old.wanfangdata.com.cn/Periodical/slxb201807009 -