NUMERICAL STUDY ON LONG-TERM STABILITY OF SOIL-ROCK MIXTURE SLOPE USING STRENGTH REDUCTION TECHNIQUE
-
摘要: 土石混合体边坡是自然界中常见的一种边坡类型,具有明显的不均匀性和不连续性。土体的蠕变是造成土石混合体边坡变形及失稳的主要原因之一,而目前关于土石混合体边坡稳定性的研究几乎均未考虑土体的蠕变性。首先运用数字图像处理技术对我国某水电站库区的一个土石混合体边坡进行建模,而后利用FLAC3D软件中的强度折减法对其进行稳定性分析,并着重研究了土体的蠕变特征及其蠕变参数对土石混合体边坡变形及稳定性的影响。计算结果表明,土体的蠕变特征会明显降低土石混合体边坡的安全系数,增大边坡变形,进而对边坡的稳定性造成不利影响;其中蠕变黏性系数对边坡的长期稳定性具有较大影响,黏性系数越大,则土石混合体边坡的安全系数越低。Abstract: Soil-rock mixture slope is a common type of slope in nature, which has obvious heterogeneity and discontinuity. Rheological property of soil is one of the main causes leading to the soil-rock mixture slope deformation and instability. But almost all the existing analyses on the stability of soil-rock mixture slopes neglect the rheological properties of soil. Using digital image processing technology, a soil-rock mixture slope model in the reservoir area of one hydropower station in China is built. Then the strength reduction method in FLAC3D code is adopted to analyze the slope stability. The analysis mainly focuses on the creep characteristics of soil and the effect of the creep parameters on the deformation and stability of the soil-rock mixture slope. The results show that the rheological property of soil can obviously reduce the factor of safety of the soil-rock mixture slope, increase the deformation of the slope, and adversely affect the stability of the slope. The creep viscosity coefficient has a great influence on the long-term stability of slope, and the greater the viscosity coefficient is, the lower the safety factor is.
-
图 5 折减系数为1.48时剪应变速率云图
a.本文计算结果;b.文献计算结果(陈卫兵等,2008)
Figure 5. Contours of shear strain rate at reduction factor=1.48
表 1 不考虑蠕变时模型参数表
Table 1. Physico-mechanical parameters of S-RMS without considering rheology
岩土体 重度
/kN·m-3弹性模量
/Pa泊松比 黏聚力
/Pa内摩擦角
/(°)土体 1820 8.16e6 0.35 4.2e4 17 块石 2510 1.25e10 0.2 1.82e6 35 表 2 土体蠕变模型参数表
Table 2. Physico-mechanical parameters of soil with considering rheology
重度
/kN·m-3弹性
模量
/Pa黏弹性
模量
/Pa泊松比 黏聚力
/Pa内摩
擦角
/(°)黏性
系数
/Pa·d-11820 8.16e6 3.47e6 0.35 4.2e4 17 1.19e5 -
Bradski G. 2000. The OpenCV library[J]. Dr Dobb's Journal, 25(11): 120. http://d.old.wanfangdata.com.cn/Periodical/wtyht201205026 Chen S, Yue Z Q, Tham L G. 2004. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 41(6): 939-957. doi: 10.1016/j.ijrmms.2004.03.002 Chen T J, Xiao S G, Cheng Q, et al. 2019. Long-term deformation and stability analysis of gravity anchorage slope on Kangding Bank of Dadu River Bridge in Luding[J]. Journal of Engineering Geology, 27(3): 632-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201903019 Chen W B, Zheng Y R, Feng X T, et al. 2008. Study on strength reduction technique considering rheological property of rock and soil medium[J]. Rock and Soil Mechanics, 29(1): 101-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200801019 Fan Y B, Adewuyi O I, Feng C. 2015. Strength characteristics of soil rock mixture under equal stress and cyclic loading conditions[J]. Geosystem Engineering, 18(1): 73-77. doi: 10.1080/12269328.2014.1002633 Gong J, Liu J. 2017. Influences of rock proportion on failure process and failure mode of soil-rock-mixture slope with PIV analysis[J]. Rock and Soil Mechanics, 38(3): 696-704. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201703011 Roth W H, Dawson E M, Drescher A. 1999. Slope stability analysis by strength reduction[J]. Géotechnique, 49(6): 835-840. doi: 10.1680/geot.1999.49.6.835 Jiang H F, Hu B, Liu Q, et al. 2013. Study on slope long-term stability considering rheological property of rock and soil medium[J]. Metal Mine, (12): 131-134, 157. Liao Q L, Li X, Zhu W C, et al. 2010. Structure model construction of rock and soil aggregate based on digital image technology and its numerical simulation on mechanical structure effects[J]. Chinese Journal of Rock Mechanics and Engineering, 29(1): 155-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201001020 Lu Y, Tan H, Li X. 2018. Stability analyses on slopes of clay-rock mixtures using discrete element method[J]. Engineering Geology, 244 : 116-124. doi: 10.1016/j.enggeo.2018.07.021 Sun S R, Xu P L, Wu J M, et al. 2014. Strength parameter Identification and application of soil-rock mixture for steep-walled talus slopes in southwestern China[J]. Bulletin of Engineering Geology and the Environment, 73(1): 123-140. doi: 10.1007/s10064-013-0524-1 Wang T, Zhang G. 2019. Failure behavior of soil-rock mixture slopes based on centrifuge model test[J]. Journal of Mountain Science, 16(8): 1928-1942. doi: 10.1007/s11629-019-5423-x Wang X B, Bai X Y, Zhang B W, et al. 2018. Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation method[J]. Journal of Engineering Geology, 26(4): 882-890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201804011 Xu W J, Hu R L. 2009. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology, 36 (4): 50-56, 70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200904012 Xu W J, Yue Z Y, Hu R L. 2008. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method[J]. International Journal of Rock Mechanics and Mining Sciences, 45(5): 749-762. doi: 10.1016/j.ijrmms.2007.09.003 Xu W J, Wang Y J, Chen Z Y, et al. 2008. Stability analysis of soil-rock mixed slope based on digital image technology[J]. Rock and Soil Mechanics, 28 (S1): 341-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2008z1069 Xu W J. 2009. Study of spatial effect and stability of large scale soil-rock mixture landslide[J]. Rock and Soil Mechanics, 30 (S2): 328-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2009z2070 Yang C G. 2019. Numerical simulation of rock-soil aggregate mixture throughout digital image processing[J]. Soil Engineering and Foundation, 33(1): 49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201901012 Yang Y T, Sun G H, Zheng H, et al. 2019. Investigation of the sequential excavation of a soil-rock-mixture slope using the numerical manifold method[J]. Engineering Geology, 256 : 93-109. doi: 10.1016/j.enggeo.2019.05.005 Yang Z P, Lei X D, Wang L, et al. 2017. Impact of stone content to shear properties of soil-rock mixture using particle flow code simulation[J]. Journal of Engineering Geology, 25(4): 1035-1045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201704019 You X H, Tang J S. 2002. Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 21(10): 1537-1540. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200210022.htm Zhang S, Zeng Y W, Xia L. 2016. Numerical study on the influence of rock block proportion on SRM slope's stability[J]. Journal of Yangtze River Scientific Research Institute, 33(5): 83-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201605015 Zheng B N, Ding D Y, Zhang D, et al. 2019. CT scanning and PFC modeling combined 3D method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 27(3): 569-576. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201903012 Zhou Z, Xing K, Yang H, et al. 2019. Damage mechanism of soil-rock mixture after freeze-thaw cycles[J]. Journal of Central South University, 26(1): 13-24. doi: 10.1007/s11771-019-3979-9 陈廷君, 肖世国, 程强, 等. 2019.泸定大渡河桥康定岸重力锚边坡长期变形与稳定性分析[J].工程地质学报, 27(3): 632-639. doi: 10.13544/j.cnki.jeg.2018-253 陈卫兵, 郑颖人, 冯夏庭, 等. 2008.考虑岩土体流变特性的强度折减法研究[J].岩土力学, 29(1): 101-105. doi: 10.3969/j.issn.1000-7598.2008.01.019 龚健, 刘君. 2017.基于PIV分析的含石量对土石混合体边坡破坏过程及模式的影响[J].岩土力学, 38(3): 696-704. http://d.old.wanfangdata.com.cn/Periodical/ytlx201703011 蒋海飞, 胡斌, 刘强, 等. 2013.考虑岩土蠕变特性的边坡长期稳定性研究[J].金属矿山, (12): 131-134, 157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201312036 廖秋林, 李晓, 朱万成, 等. 2010.基于数码图像土石混合体结构建模及其力学结构效应的数值分析[J].岩石力学与工程学报, 29(1): 155-162. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201001020 王学滨, 白雪元, 张博闻, 等. 2018.基于数字图像相关方法的单轴压缩黏土试样剪切带剪胀实验研究[J].工程地质学报, 26(4): 882-890. doi: 10.13544/j.cnki.jeg.2017-344 徐文杰. 2009.大型土石混合体滑坡空间效应与稳定性研究[J].岩土力学, 30 (S2): 328-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2009z2070 徐文杰, 胡瑞林. 2009.土石混合体概念、分类及意义[J].水文地质工程地质, 36 (4): 50-56, 70. doi: 10.3969/j.issn.1000-3665.2009.04.012 徐文杰, 王玉杰, 陈祖煜, 等. 2008.基于数字图像技术的土石混合体边坡稳定性分析[J].岩土力学, 28 (S1): 341-346. http://d.old.wanfangdata.com.cn/Periodical/ytlx2008z1069 杨忠平, 雷晓丹, 王雷, 等. 2017.含石量对土石混合体剪切特性影响的颗粒离散元数值研究[J].工程地质学报, 25(4): 1035-1045. doi: 10.13544/j.cnki.jeg.2017.04.018 油新华, 汤劲松. 2002.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报, 21(10): 1537-1540. doi: 10.3321/j.issn:1000-6915.2002.10.021 张森, 曾亚武, 夏磊. 2016.块石含量对土石混合体边坡稳定性影响的数值研究[J].长江科学院院报, 33(5): 83-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201605015 郑博宁, 丁大勇, 张丹, 等. 2019.含砾滑带土三维颗粒流模型建模方法研究[J].工程地质学报, 27(3): 569-576. doi: 10.13544/j.cnki.jeg.2017-211 -