基于强度折减法的土石混合体边坡长期稳定性研究

刘康琦 刘红岩 祁小博

刘康琦, 刘红岩, 祁小博. 2020. 基于强度折减法的土石混合体边坡长期稳定性研究[J]. 工程地质学报, 28(2): 327-334. doi: 10.13544/j.cnki.jeg.2019-356
引用本文: 刘康琦, 刘红岩, 祁小博. 2020. 基于强度折减法的土石混合体边坡长期稳定性研究[J]. 工程地质学报, 28(2): 327-334. doi: 10.13544/j.cnki.jeg.2019-356
Liu Kangqi, Liu Hongyan, Qi Xiaobo. 2020. Numerical study on long-term stability of soil-rock mixture slope using strength reduction technique[J]. Journal of Engineering Geology, 28(2): 327-334. doi: 10.13544/j.cnki.jeg.2019-356
Citation: Liu Kangqi, Liu Hongyan, Qi Xiaobo. 2020. Numerical study on long-term stability of soil-rock mixture slope using strength reduction technique[J]. Journal of Engineering Geology, 28(2): 327-334. doi: 10.13544/j.cnki.jeg.2019-356

基于强度折减法的土石混合体边坡长期稳定性研究

doi: 10.13544/j.cnki.jeg.2019-356
基金项目: 

国家重点研发计划 2019YFC1509701

国家级地质灾害应急防治 2019

四川省自然资源科技计划 KJ-2018-23

详细信息
    作者简介:

    刘康琦(1996-),男,硕士生,主要从事岩土工程方面的研究工作. E-mail: lkq1104@126.com

    通讯作者:

    刘红岩(1975-),男,博士,教授,博士生导师,主要从事岩石力学方面的研究与教学工作. E-mail: lhyan1204@126.com

  • 中图分类号: TU443

NUMERICAL STUDY ON LONG-TERM STABILITY OF SOIL-ROCK MIXTURE SLOPE USING STRENGTH REDUCTION TECHNIQUE

Funds: 

the National Key Research and Development Plan of China 2019YFC1509701

the Emergency Prevention and Control Program of National Geological Disasters of China 2019

Natural Resources Science and Technology Program of Sichuan Province of China KJ-2018-23

  • 摘要: 土石混合体边坡是自然界中常见的一种边坡类型,具有明显的不均匀性和不连续性。土体的蠕变是造成土石混合体边坡变形及失稳的主要原因之一,而目前关于土石混合体边坡稳定性的研究几乎均未考虑土体的蠕变性。首先运用数字图像处理技术对我国某水电站库区的一个土石混合体边坡进行建模,而后利用FLAC3D软件中的强度折减法对其进行稳定性分析,并着重研究了土体的蠕变特征及其蠕变参数对土石混合体边坡变形及稳定性的影响。计算结果表明,土体的蠕变特征会明显降低土石混合体边坡的安全系数,增大边坡变形,进而对边坡的稳定性造成不利影响;其中蠕变黏性系数对边坡的长期稳定性具有较大影响,黏性系数越大,则土石混合体边坡的安全系数越低。
  • 图  1  实际的土石混合体边坡图像

    Figure  1.  Image of soil-rock mixture slope

    图  2  矢量化土石混合体边坡模型

    Figure  2.  Vector model of soil-rock mixture slope

    图  3  FLAC3D中生成的土石混合体边坡模型图

    Figure  3.  Model of soil-rock mixture slope in FLAC3D

    图  4  FLAC3D中Cvisc模型示意图

    Figure  4.  Illustrations of Cvisc rheological model in FLAC3D

    图  5  折减系数为1.48时剪应变速率云图

    a.本文计算结果;b.文献计算结果(陈卫兵等,2008)

    Figure  5.  Contours of shear strain rate at reduction factor=1.48

    图  6  不考虑蠕变效应时边坡剪应变速率云图

    Figure  6.  Contours of shear strain rate without considering rheology

    图  7  考虑蠕变效应时边坡剪应变速率云图

    Figure  7.  Contours of shear strain rate with considering rheology

    图  8  折减系数为1.46时监测点位移曲线

    Figure  8.  Horizontal displacement vs time of monitoring points at reduction factor=1.46

    图  9  折减系数为1.47时监测点位移曲线

    Figure  9.  Horizontal displacement vs time of monitoring points at reduction factor=1.47

    图  10  关键点水平位移与折减系数的关系曲线

    Figure  10.  Horizontal displacements of monitoring points at different reduction factors with considering rheology

    图  11  不同黏性系数时边坡安全系数

    Figure  11.  FOS with different viscosity coefficient

    表  1  不考虑蠕变时模型参数表

    Table  1.   Physico-mechanical parameters of S-RMS without considering rheology

    岩土体重度
    /kN·m-3
    弹性模量
    /Pa
    泊松比黏聚力
    /Pa
    内摩擦角
    /(°)
    土体18208.16e60.354.2e417
    块石25101.25e100.21.82e635
    下载: 导出CSV

    表  2  土体蠕变模型参数表

    Table  2.   Physico-mechanical parameters of soil with considering rheology

    重度
    /kN·m-3
    弹性
    模量
    /Pa
    黏弹性
    模量
    /Pa
    泊松比黏聚力
    /Pa
    内摩
    擦角
    /(°)
    黏性
    系数
    /Pa·d-1
    18208.16e63.47e60.354.2e4171.19e5
    下载: 导出CSV
  • Bradski G. 2000. The OpenCV library[J]. Dr Dobb's Journal, 25(11): 120. http://d.old.wanfangdata.com.cn/Periodical/wtyht201205026
    Chen S, Yue Z Q, Tham L G. 2004. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 41(6): 939-957. doi: 10.1016/j.ijrmms.2004.03.002
    Chen T J, Xiao S G, Cheng Q, et al. 2019. Long-term deformation and stability analysis of gravity anchorage slope on Kangding Bank of Dadu River Bridge in Luding[J]. Journal of Engineering Geology, 27(3): 632-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201903019
    Chen W B, Zheng Y R, Feng X T, et al. 2008. Study on strength reduction technique considering rheological property of rock and soil medium[J]. Rock and Soil Mechanics, 29(1): 101-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200801019
    Fan Y B, Adewuyi O I, Feng C. 2015. Strength characteristics of soil rock mixture under equal stress and cyclic loading conditions[J]. Geosystem Engineering, 18(1): 73-77. doi: 10.1080/12269328.2014.1002633
    Gong J, Liu J. 2017. Influences of rock proportion on failure process and failure mode of soil-rock-mixture slope with PIV analysis[J]. Rock and Soil Mechanics, 38(3): 696-704. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201703011
    Roth W H, Dawson E M, Drescher A. 1999. Slope stability analysis by strength reduction[J]. Géotechnique, 49(6): 835-840. doi: 10.1680/geot.1999.49.6.835
    Jiang H F, Hu B, Liu Q, et al. 2013. Study on slope long-term stability considering rheological property of rock and soil medium[J]. Metal Mine, (12): 131-134, 157.
    Liao Q L, Li X, Zhu W C, et al. 2010. Structure model construction of rock and soil aggregate based on digital image technology and its numerical simulation on mechanical structure effects[J]. Chinese Journal of Rock Mechanics and Engineering, 29(1): 155-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201001020
    Lu Y, Tan H, Li X. 2018. Stability analyses on slopes of clay-rock mixtures using discrete element method[J]. Engineering Geology, 244 : 116-124. doi: 10.1016/j.enggeo.2018.07.021
    Sun S R, Xu P L, Wu J M, et al. 2014. Strength parameter Identification and application of soil-rock mixture for steep-walled talus slopes in southwestern China[J]. Bulletin of Engineering Geology and the Environment, 73(1): 123-140. doi: 10.1007/s10064-013-0524-1
    Wang T, Zhang G. 2019. Failure behavior of soil-rock mixture slopes based on centrifuge model test[J]. Journal of Mountain Science, 16(8): 1928-1942. doi: 10.1007/s11629-019-5423-x
    Wang X B, Bai X Y, Zhang B W, et al. 2018. Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation method[J]. Journal of Engineering Geology, 26(4): 882-890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201804011
    Xu W J, Hu R L. 2009. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology, 36 (4): 50-56, 70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200904012
    Xu W J, Yue Z Y, Hu R L. 2008. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method[J]. International Journal of Rock Mechanics and Mining Sciences, 45(5): 749-762. doi: 10.1016/j.ijrmms.2007.09.003
    Xu W J, Wang Y J, Chen Z Y, et al. 2008. Stability analysis of soil-rock mixed slope based on digital image technology[J]. Rock and Soil Mechanics, 28 (S1): 341-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2008z1069
    Xu W J. 2009. Study of spatial effect and stability of large scale soil-rock mixture landslide[J]. Rock and Soil Mechanics, 30 (S2): 328-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2009z2070
    Yang C G. 2019. Numerical simulation of rock-soil aggregate mixture throughout digital image processing[J]. Soil Engineering and Foundation, 33(1): 49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgjc201901012
    Yang Y T, Sun G H, Zheng H, et al. 2019. Investigation of the sequential excavation of a soil-rock-mixture slope using the numerical manifold method[J]. Engineering Geology, 256 : 93-109. doi: 10.1016/j.enggeo.2019.05.005
    Yang Z P, Lei X D, Wang L, et al. 2017. Impact of stone content to shear properties of soil-rock mixture using particle flow code simulation[J]. Journal of Engineering Geology, 25(4): 1035-1045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201704019
    You X H, Tang J S. 2002. Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 21(10): 1537-1540. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200210022.htm
    Zhang S, Zeng Y W, Xia L. 2016. Numerical study on the influence of rock block proportion on SRM slope's stability[J]. Journal of Yangtze River Scientific Research Institute, 33(5): 83-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201605015
    Zheng B N, Ding D Y, Zhang D, et al. 2019. CT scanning and PFC modeling combined 3D method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 27(3): 569-576. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201903012
    Zhou Z, Xing K, Yang H, et al. 2019. Damage mechanism of soil-rock mixture after freeze-thaw cycles[J]. Journal of Central South University, 26(1): 13-24. doi: 10.1007/s11771-019-3979-9
    陈廷君, 肖世国, 程强, 等. 2019.泸定大渡河桥康定岸重力锚边坡长期变形与稳定性分析[J].工程地质学报, 27(3): 632-639. doi: 10.13544/j.cnki.jeg.2018-253
    陈卫兵, 郑颖人, 冯夏庭, 等. 2008.考虑岩土体流变特性的强度折减法研究[J].岩土力学, 29(1): 101-105. doi: 10.3969/j.issn.1000-7598.2008.01.019
    龚健, 刘君. 2017.基于PIV分析的含石量对土石混合体边坡破坏过程及模式的影响[J].岩土力学, 38(3): 696-704. http://d.old.wanfangdata.com.cn/Periodical/ytlx201703011
    蒋海飞, 胡斌, 刘强, 等. 2013.考虑岩土蠕变特性的边坡长期稳定性研究[J].金属矿山, (12): 131-134, 157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201312036
    廖秋林, 李晓, 朱万成, 等. 2010.基于数码图像土石混合体结构建模及其力学结构效应的数值分析[J].岩石力学与工程学报, 29(1): 155-162. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201001020
    王学滨, 白雪元, 张博闻, 等. 2018.基于数字图像相关方法的单轴压缩黏土试样剪切带剪胀实验研究[J].工程地质学报, 26(4): 882-890. doi: 10.13544/j.cnki.jeg.2017-344
    徐文杰. 2009.大型土石混合体滑坡空间效应与稳定性研究[J].岩土力学, 30 (S2): 328-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2009z2070
    徐文杰, 胡瑞林. 2009.土石混合体概念、分类及意义[J].水文地质工程地质, 36 (4): 50-56, 70. doi: 10.3969/j.issn.1000-3665.2009.04.012
    徐文杰, 王玉杰, 陈祖煜, 等. 2008.基于数字图像技术的土石混合体边坡稳定性分析[J].岩土力学, 28 (S1): 341-346. http://d.old.wanfangdata.com.cn/Periodical/ytlx2008z1069
    杨忠平, 雷晓丹, 王雷, 等. 2017.含石量对土石混合体剪切特性影响的颗粒离散元数值研究[J].工程地质学报, 25(4): 1035-1045. doi: 10.13544/j.cnki.jeg.2017.04.018
    油新华, 汤劲松. 2002.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报, 21(10): 1537-1540. doi: 10.3321/j.issn:1000-6915.2002.10.021
    张森, 曾亚武, 夏磊. 2016.块石含量对土石混合体边坡稳定性影响的数值研究[J].长江科学院院报, 33(5): 83-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201605015
    郑博宁, 丁大勇, 张丹, 等. 2019.含砾滑带土三维颗粒流模型建模方法研究[J].工程地质学报, 27(3): 569-576. doi: 10.13544/j.cnki.jeg.2017-211
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  2564
  • HTML全文浏览量:  470
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-22
  • 修回日期:  2019-12-11
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回