基于分形理论的粉砂质泥岩酸雨崩解特征研究

赵晓彦 李昆鹏 肖典 曾彩云 张良

赵晓彦, 李昆鹏, 肖典, 等. 2020. 基于分形理论的粉砂质泥岩酸雨崩解特征研究[J]. 工程地质学报, 28(2): 232-239. doi: 10.13544/j.cnki.jeg.2019-368
引用本文: 赵晓彦, 李昆鹏, 肖典, 等. 2020. 基于分形理论的粉砂质泥岩酸雨崩解特征研究[J]. 工程地质学报, 28(2): 232-239. doi: 10.13544/j.cnki.jeg.2019-368
Zhao Xiaoyan, Li Kunpeng, Xiao Dian, et al. 2020. Slaking characteristics of silty mudstone under acid rain action based on fractal dimension[J]. Journal of Engineering Geology, 28(2): 232-239. doi: 10.13544/j.cnki.jeg.2019-368
Citation: Zhao Xiaoyan, Li Kunpeng, Xiao Dian, et al. 2020. Slaking characteristics of silty mudstone under acid rain action based on fractal dimension[J]. Journal of Engineering Geology, 28(2): 232-239. doi: 10.13544/j.cnki.jeg.2019-368

基于分形理论的粉砂质泥岩酸雨崩解特征研究

doi: 10.13544/j.cnki.jeg.2019-368
基金项目: 

四川省交通运输厅科技项目 2015B1-1

国家自然科学基金资金项目 41672295

详细信息
    作者简介:

    赵晓彦(1977-),男,博士,教授,博士生导师,主要从事地质灾害及防治工程方面研究.E-mail: xyzhao2@swjtu.edu.cn

    通讯作者:

    李昆鹏(1995-),男,硕士生,主要从事环境岩土及边坡加固方面研究.E-mail: kunpeng_lee@163.com

  • 中图分类号: P642.22

SLAKING CHARACTERISTICS OF SILTY MUDSTONE UNDER ACID RAIN ACTION BASED ON FRACTAL DIMENSION

Funds: 

Science and Technology Project of Department of Transportation of Sichuan Province 2015B1-1

the National Natural Science Foundation of China 41672295

  • 摘要: 黏土岩的崩解过程易受环境条件(如崩解液特征)影响,酸雨作用对其影响显著,但其酸雨崩解特征有待研究。目前对黏土岩崩解特征的评价多采用耐崩解性指数,仅考虑崩解后大于2mm的残留颗粒质量,未反映崩解后的整体粒径分布特征。本文以典型酸雨区攀枝花机场滑坡为依托,选取滑带粉砂质泥岩,开展不同pH值条件下的岩石崩解试验;引入分形理论,建立分形维数与酸雨历时、降雨酸度间的相关关系,定量刻画粉砂质泥岩酸雨崩解特征及影响因素;采用电感耦合等离子体发射光谱法分析不同酸度崩解溶液的离子成分差异,以探索降雨酸度造成岩石崩解特征差异的本质原因。结果表明:采用分形理论可以较好地反映粉砂质泥岩酸雨崩解特征,分形维数越大,粉砂质泥岩崩解程度越大;分形维数与酸雨历时、降雨酸度之间皆存在明显对数正相关关系;不同降雨酸度粉砂质泥岩崩解特征存在差异的原因在于白云石、方解石溶蚀程度不同。研究成果可为酸雨地区黏土岩的工程性质评价提供参考。
  • 图  1  取样点位置

    Figure  1.  Sample location

    图  2  试样矿物组成及含量(%)

    Figure  2.  Mineral composition and content of the sample

    图  3  粉砂质泥岩室内试验样品

    Figure  3.  Silty mudstone samples

    图  4  耐崩解仪

    Figure  4.  The slake durability testing device

    图  5  不同pH条件下试样崩解照片

    a. pH=7;b. pH=5;c. pH=3

    Figure  5.  Photos of samples after slaking at different pH values

    图  6  不同pH条件下各粒组含量随崩解循环次数的变化

    a. >=20mm;b. 10~20mm;c. 5~10mm;d. 2~5mm

    Figure  6.  Curves of percentage content of different particle size groups with slaking cycles at different pH values

    图  7  不同pH酸雨作用下粉砂质泥岩崩解残留物的曲线

    a. pH=7;b. pH=5;c. pH=3

    Figure  7.  Curves of slaking residues of silty mudstone under acid rain action of different pH value

    图  8  粉砂质泥岩分形维数随崩解循环次数变化曲线

    Figure  8.  Curves of fractal dimension of silty mudstone varying with the number of slaking cycles

    图  9  降雨酸度与粉砂质泥岩分形维数关系曲线

    Figure  9.  Curves between acidity of rainfall and fractal dimension of silty mudstone

    图  10  不同降雨酸度下崩解完成后水溶液阳离子种类及含量

    Figure  10.  The composition and content of cations in aqueous solution after slaking cycles under the acid rain action with different acidities

    表  1  试样在不同pH酸雨作用下的耐崩解性指数

    Table  1.   The slake durability index of samples under different pH value

    pH值条件 耐崩解性指数/%
    pH=7 97.19
    pH=5 95.71
    pH=3 95.12
    下载: 导出CSV

    表  2  试样在不同pH酸雨作用下的分形维数

    Table  2.   Fractal dimension of samples under acid rain action of different pH value

    pH值
    条件
    分形维数DS
    1 2 3 4 5 6 7 8 9
    pH=7 0.39 0.53 0.68 0.69 0.76 0.83 0.82 0.84 0.85
    pH=5 0.48 0.71 0.93 0.94 1.00 0.98 0.92 0.99 0.99
    pH=3 0.54 0.85 1.01 1.06 1.10 1.05 1.06 1.10 1.10
    下载: 导出CSV

    表  3  酸雨作用下粉砂质泥岩分形维数与崩解循环次数拟合方程

    Table  3.   Correlation fitting equations of fractal dimension of silty mudstone and cycle number under acid rain action

    pH值条件 拟合方程 相关系数R
    pH=7 DS=0.2179 lnn+0.4000 0.9875
    pH=5 DS=0.2205 lnn+0.5686 0.9058
    pH=3 DS=0.2344 lnn+0.6522 0.9143
    下载: 导出CSV
  • Admassu Y, Hamdan H, Gautam T. 2016. Multivariate statistical approach to re-evaluate the slake durability index test(ASTM 4644-08)[J]. Engineering Geology, 209 : 12-20. doi: 10.1016/j.enggeo.2016.05.004
    Ding W X, Feng X T. 2009. Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion[J]. Chinese Journal of Geotechnical Engineering, 31(6): 899-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200906013
    Erguler Z A, Shakoor A. 2009. Relative contribution of various climatic processes in slaking of clay-bearing rocks[J]. Engineering Geology, 108(1-2): 36-42.
    Gao F, Xie H P, Zhao P. 1994. Fractal properties of size-frequency distribution of rock fragments and the influence of meso-structure[J]. Chinese Journal of Rock Mechanics and Engineering, 13(3): 240-246.
    Gautam T P, Shakoor A. 2013. Slaking behavior of clay-bearing rocks during a one-year exposure to natural climatic conditions[J]. Engineering Geology, 166 : 17-25. doi: 10.1016/j.enggeo.2013.08.003
    Liang B, Tan X Y, Jiang L G, et al. 2016. Effects on freeze-thaw and drying-wetting cycles on slaking characteristics of mudstone[J]. Chinese Journal of Geotechnical Engineering, 38(4): 705-711. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604016
    Lin W. 2012. Analysis on the change of acid rain and chemical characteristics of precipitation in panzhihua city[J]. Panzhihua Science and Technology and Information, 37(2): 53-57.
    Liu Y S. 2013. Micromechanical properties of surrounding rock in deep roadways under chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 35 (S1): 350-353. http://cn.bing.com/academic/profile?id=31d3d8dbf9407036ed2234fb67a25881&encoded=0&v=paper_preview&mkt=zh-cn
    Qu Y X. 2014. From the Bentonite incident at the Chushandian reservoir project to prediction research of claystone mudzation at the in Gezhouba project[J]. Journal of Engineering Geology, 22(4): 699-702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201404020
    Shen P W, Tang H M, Wang D J, et al. 2017. Disintegration characteristics of red-bed mudstone of Badong Formation under wet-dry cycles[J]. Rock and Soil Mechanics, 38(7): 1990-1998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707019
    Tan L R. 2001. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics, 22(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200101001
    The Professional Standards Compilation Group of People's Republic of China. 2007. Rock test rules for hydropower and water conservancy engineering[S]. Beijing: China Electric Power Press.
    Tu Y, Wang X J, Feng Y K. 2004. Preliminary discussion on pollution characteristics and formation cause of acid rain in panzhihua city[J]. Sichuan Environment, 23(5): 36-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=schj200405011
    Vlastelica G, Miščević P, Atambuk Cvitanović N. 2018. Durability of soft rocks in Eocene flysch formation(Dalmatia, Croatia)[J]. Engineering Geology, 245 : 207-217. doi: 10.1016/j.enggeo.2018.08.015
    Wen Z Y, Jing Z J. 1995. Brief introduction to fractal geometry and fractal dimension[J]. Mathematics in Practice and Theory, (4): 20-34. http://cn.bing.com/academic/profile?id=12c6d507cf4531a764fdf1b3c99e696b&encoded=0&v=paper_preview&mkt=zh-cn
    Xie H P. 1996. Fractal-Introduction to Petrology[M]. Beijing: Science Press.
    Yang A, Sun B, Zhao Q G. 1999. Distribution and cause of acid rain in China and the impact on the soil environment[J]. Soils, (1): 13-18.
    Yang K G, Yuan Y M. 2009. Basis of geology[M]. Wuhan: China University of Geology Press.
    Zeng Z X, Kong L W, Tian H, et al. 2017. Effect of drying and wetting cycles on disintegration behavior of swelling mudstone and its grading entropy characterization[J]. Rock and Soil Mechanics, 38(7): 1983-1989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707018
    Zhang D, Chen A Q, Liu G C. 2012. disintegration characteristics of purple mudstone based on fractal dimension under hydrothermal condition[J]. Rock and Soil Mechanics, 33(5): 1341-1346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201205010
    Zhang M, Mcsaveney M J. 2018. Is air pollution causing landslides in China?[J]. Earth and Planetary Science Letters, 481 : 284-289. doi: 10.1016/j.epsl.2017.10.045
    Zhang X M, Chai F H, Wang S L, et al. 2010. Research progress of acid rain precipitation in China[J]. Research of Environmental Sciences, 23(5): 523-532. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKX201005001.htm
    Zhao M H, Deng J Y, Cao W G. 2003. Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 16(3): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglxb200303001
    Zhao X Y, Li K P, Li X, et al. 2019. Experimental study on mechanism of acid rain-induced slide of gabbro rock slope[J]. Journal of Engineering Geology, 27(1): 152-161. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201901016
    丁梧秀, 冯夏庭. 2009.化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J].岩土工程学报, 31(6): 899-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200906013
    高峰, 谢和平, 赵鹏. 1994.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报, 13(3): 240-246. http://www.cqvip.com/qk/96026X/199403/1527929.html
    梁冰, 谭晓引, 姜利国, 等. 2016.冻-融及干-湿循环对泥质岩崩解特性影响的试验研究[J].岩土工程学报, 38(4): 705-711. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604016
    林武. 2012.攀枝花市酸雨变化及降水化学特征分析[J].攀枝花科技与信息, 37(2): 53-57. http://d.old.wanfangdata.com.cn/Periodical/pzhxyxb201204036
    刘永胜. 2013.化学腐蚀作用下深部巷道围岩的细观力学性能研究[J].岩土工程学报, 35 (S1): 350-353. http://d.old.wanfangdata.com.cn/Conference/8127361
    曲永新. 2014.从淮河出山店水库的斑脱岩事件到葛洲坝工程泥化夹层恶化, 黏土岩泥化预测研究[J].工程地质学报, 22(4): 699-702. doi: 10.13544/j.cnki.jeg.2014.04.016
    申培武, 唐辉明, 汪丁建, 等. 2017.巴东组紫红色泥岩干湿循环崩解特征试验研究[J].岩土力学, 38(7): 1990-1998. http://d.old.wanfangdata.com.cn/Periodical/ytlx201707019
    谭罗荣. 2001.关于黏土岩崩解、泥化机理的讨论[J].岩土力学, 22(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200101001
    涂勇, 王小将, 封悦科. 2004.浅析攀枝花市酸雨污染特征及成因[J].四川环境, 23(5): 36-39. http://d.old.wanfangdata.com.cn/Periodical/schj200405011
    文志英, 井竹君. 1995.分形几何和分维数简介[J].数学的实践与认识, (4): 20-34.
    谢和平. 1996.分形——岩石学导论[M].北京:科学出版社.
    杨昂, 孙波, 赵其国. 1999.中国酸雨的分布、成因及其对土壤环境的影响[J].土壤, (1): 13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900670537
    杨坤光, 袁晏明. 2009.地质学基础[M].武汉:中国地质大学出版社.
    曾志雄, 孔令伟, 田海, 等. 2017.膨胀岩崩解特性的干湿循环效应与粒度熵表征[J].岩土力学, 38(7): 1983-1989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707018
    张丹, 陈安强, 刘刚才. 2012.紫色泥岩水热条件下崩解过程的分维特性[J].岩土力学, 33(5): 1341-1346. http://d.old.wanfangdata.com.cn/Periodical/ytlx201205010
    张新民, 柴发合, 王淑兰, 等. 2010.中国酸雨研究现状[J].环境科学研究, 23(5): 527-532. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201005001
    赵明华, 邓觐宇, 曹文贵. 2003.红砂岩崩解特性及其路堤填筑技术研究[J].中国公路学报, 16(3): 1-5. http://d.old.wanfangdata.com.cn/Periodical/zgglxb200303001
    赵晓彦, 李昆鹏, 李珣, 等. 2019.辉长岩质边坡酸雨致滑机理试验研究[J].工程地质学报, 27(1): 152-161. doi: 10.13544/j.cnki.jeg.2018-458
    中华人民共和国行业标准编写组. 2007.水电水利工程岩石试验规程(DLIT 5368-2007)[S].北京: 中国电力出版社.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1800
  • HTML全文浏览量:  553
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2019-12-28
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回