SLAKING CHARACTERISTICS OF SILTY MUDSTONE UNDER ACID RAIN ACTION BASED ON FRACTAL DIMENSION
-
摘要: 黏土岩的崩解过程易受环境条件(如崩解液特征)影响,酸雨作用对其影响显著,但其酸雨崩解特征有待研究。目前对黏土岩崩解特征的评价多采用耐崩解性指数,仅考虑崩解后大于2mm的残留颗粒质量,未反映崩解后的整体粒径分布特征。本文以典型酸雨区攀枝花机场滑坡为依托,选取滑带粉砂质泥岩,开展不同pH值条件下的岩石崩解试验;引入分形理论,建立分形维数与酸雨历时、降雨酸度间的相关关系,定量刻画粉砂质泥岩酸雨崩解特征及影响因素;采用电感耦合等离子体发射光谱法分析不同酸度崩解溶液的离子成分差异,以探索降雨酸度造成岩石崩解特征差异的本质原因。结果表明:采用分形理论可以较好地反映粉砂质泥岩酸雨崩解特征,分形维数越大,粉砂质泥岩崩解程度越大;分形维数与酸雨历时、降雨酸度之间皆存在明显对数正相关关系;不同降雨酸度粉砂质泥岩崩解特征存在差异的原因在于白云石、方解石溶蚀程度不同。研究成果可为酸雨地区黏土岩的工程性质评价提供参考。Abstract: Slaking process of claystone is vulnerable to environmental condition. The acid rain can significantly affect the process. The corresponding mechanism remains to be studied. Traditionally, the slaking characteristic of claystone is evaluated by second cycle slake durability index which is determined by the mass of the residual particles larger than 2 mm only. Such evaluation fails to reflect the characteristics of the overall particle size distribution. This paper takes the Panzhihua landslide as an example. The site is located in the typical acid rain area. The silty mudstone samples located on the sliding surface are processed. Then a series of slaking experiments are carried out by the use of solutions with different pH values. Based on the fractal theory, the fractal dimension is introduced to quantitatively describe the slaking characteristics of silty mudstone. The correlations between fractal dimension with acid rain duration and acidity of rainfall are established, respectively. The substantial cause for the slaking characteristic differences due to different rainfall acidity is determined through analyzing the solution chemical composition. The results highlight that the fractal theory can better reflect the acid rain slaking characteristics of silty mudstone. The higher the fractal dimension is, the higher the slaking degree. The logarithmic positive correlation exists between the fractal dimension and the duration of acid rain, the final fractal dimension and the acidity of rainfall. The reason for the slaking characteristics difference under various rainfall acidities lies in the different degrees of dolomite and calcite dissolutions. Conclusions of this paper can be taken as references for engineering property evaluation of rock mass in acid rain area.
-
Key words:
- Acid rain /
- Slaking /
- Acid rain duration /
- Acidity of rainfall /
- Fractal dimension /
- Silty mudstone
-
表 1 试样在不同pH酸雨作用下的耐崩解性指数
Table 1. The slake durability index of samples under different pH value
pH值条件 耐崩解性指数/% pH=7 97.19 pH=5 95.71 pH=3 95.12 表 2 试样在不同pH酸雨作用下的分形维数
Table 2. Fractal dimension of samples under acid rain action of different pH value
pH值
条件分形维数DS 1 2 3 4 5 6 7 8 9 pH=7 0.39 0.53 0.68 0.69 0.76 0.83 0.82 0.84 0.85 pH=5 0.48 0.71 0.93 0.94 1.00 0.98 0.92 0.99 0.99 pH=3 0.54 0.85 1.01 1.06 1.10 1.05 1.06 1.10 1.10 表 3 酸雨作用下粉砂质泥岩分形维数与崩解循环次数拟合方程
Table 3. Correlation fitting equations of fractal dimension of silty mudstone and cycle number under acid rain action
pH值条件 拟合方程 相关系数R pH=7 DS=0.2179 lnn+0.4000 0.9875 pH=5 DS=0.2205 lnn+0.5686 0.9058 pH=3 DS=0.2344 lnn+0.6522 0.9143 -
Admassu Y, Hamdan H, Gautam T. 2016. Multivariate statistical approach to re-evaluate the slake durability index test(ASTM 4644-08)[J]. Engineering Geology, 209 : 12-20. doi: 10.1016/j.enggeo.2016.05.004 Ding W X, Feng X T. 2009. Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion[J]. Chinese Journal of Geotechnical Engineering, 31(6): 899-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200906013 Erguler Z A, Shakoor A. 2009. Relative contribution of various climatic processes in slaking of clay-bearing rocks[J]. Engineering Geology, 108(1-2): 36-42. Gao F, Xie H P, Zhao P. 1994. Fractal properties of size-frequency distribution of rock fragments and the influence of meso-structure[J]. Chinese Journal of Rock Mechanics and Engineering, 13(3): 240-246. Gautam T P, Shakoor A. 2013. Slaking behavior of clay-bearing rocks during a one-year exposure to natural climatic conditions[J]. Engineering Geology, 166 : 17-25. doi: 10.1016/j.enggeo.2013.08.003 Liang B, Tan X Y, Jiang L G, et al. 2016. Effects on freeze-thaw and drying-wetting cycles on slaking characteristics of mudstone[J]. Chinese Journal of Geotechnical Engineering, 38(4): 705-711. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604016 Lin W. 2012. Analysis on the change of acid rain and chemical characteristics of precipitation in panzhihua city[J]. Panzhihua Science and Technology and Information, 37(2): 53-57. Liu Y S. 2013. Micromechanical properties of surrounding rock in deep roadways under chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 35 (S1): 350-353. http://cn.bing.com/academic/profile?id=31d3d8dbf9407036ed2234fb67a25881&encoded=0&v=paper_preview&mkt=zh-cn Qu Y X. 2014. From the Bentonite incident at the Chushandian reservoir project to prediction research of claystone mudzation at the in Gezhouba project[J]. Journal of Engineering Geology, 22(4): 699-702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201404020 Shen P W, Tang H M, Wang D J, et al. 2017. Disintegration characteristics of red-bed mudstone of Badong Formation under wet-dry cycles[J]. Rock and Soil Mechanics, 38(7): 1990-1998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707019 Tan L R. 2001. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics, 22(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200101001 The Professional Standards Compilation Group of People's Republic of China. 2007. Rock test rules for hydropower and water conservancy engineering[S]. Beijing: China Electric Power Press. Tu Y, Wang X J, Feng Y K. 2004. Preliminary discussion on pollution characteristics and formation cause of acid rain in panzhihua city[J]. Sichuan Environment, 23(5): 36-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=schj200405011 Vlastelica G, Miščević P, Atambuk Cvitanović N. 2018. Durability of soft rocks in Eocene flysch formation(Dalmatia, Croatia)[J]. Engineering Geology, 245 : 207-217. doi: 10.1016/j.enggeo.2018.08.015 Wen Z Y, Jing Z J. 1995. Brief introduction to fractal geometry and fractal dimension[J]. Mathematics in Practice and Theory, (4): 20-34. http://cn.bing.com/academic/profile?id=12c6d507cf4531a764fdf1b3c99e696b&encoded=0&v=paper_preview&mkt=zh-cn Xie H P. 1996. Fractal-Introduction to Petrology[M]. Beijing: Science Press. Yang A, Sun B, Zhao Q G. 1999. Distribution and cause of acid rain in China and the impact on the soil environment[J]. Soils, (1): 13-18. Yang K G, Yuan Y M. 2009. Basis of geology[M]. Wuhan: China University of Geology Press. Zeng Z X, Kong L W, Tian H, et al. 2017. Effect of drying and wetting cycles on disintegration behavior of swelling mudstone and its grading entropy characterization[J]. Rock and Soil Mechanics, 38(7): 1983-1989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707018 Zhang D, Chen A Q, Liu G C. 2012. disintegration characteristics of purple mudstone based on fractal dimension under hydrothermal condition[J]. Rock and Soil Mechanics, 33(5): 1341-1346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201205010 Zhang M, Mcsaveney M J. 2018. Is air pollution causing landslides in China?[J]. Earth and Planetary Science Letters, 481 : 284-289. doi: 10.1016/j.epsl.2017.10.045 Zhang X M, Chai F H, Wang S L, et al. 2010. Research progress of acid rain precipitation in China[J]. Research of Environmental Sciences, 23(5): 523-532. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKX201005001.htm Zhao M H, Deng J Y, Cao W G. 2003. Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 16(3): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglxb200303001 Zhao X Y, Li K P, Li X, et al. 2019. Experimental study on mechanism of acid rain-induced slide of gabbro rock slope[J]. Journal of Engineering Geology, 27(1): 152-161. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201901016 丁梧秀, 冯夏庭. 2009.化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J].岩土工程学报, 31(6): 899-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200906013 高峰, 谢和平, 赵鹏. 1994.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报, 13(3): 240-246. http://www.cqvip.com/qk/96026X/199403/1527929.html 梁冰, 谭晓引, 姜利国, 等. 2016.冻-融及干-湿循环对泥质岩崩解特性影响的试验研究[J].岩土工程学报, 38(4): 705-711. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201604016 林武. 2012.攀枝花市酸雨变化及降水化学特征分析[J].攀枝花科技与信息, 37(2): 53-57. http://d.old.wanfangdata.com.cn/Periodical/pzhxyxb201204036 刘永胜. 2013.化学腐蚀作用下深部巷道围岩的细观力学性能研究[J].岩土工程学报, 35 (S1): 350-353. http://d.old.wanfangdata.com.cn/Conference/8127361 曲永新. 2014.从淮河出山店水库的斑脱岩事件到葛洲坝工程泥化夹层恶化, 黏土岩泥化预测研究[J].工程地质学报, 22(4): 699-702. doi: 10.13544/j.cnki.jeg.2014.04.016 申培武, 唐辉明, 汪丁建, 等. 2017.巴东组紫红色泥岩干湿循环崩解特征试验研究[J].岩土力学, 38(7): 1990-1998. http://d.old.wanfangdata.com.cn/Periodical/ytlx201707019 谭罗荣. 2001.关于黏土岩崩解、泥化机理的讨论[J].岩土力学, 22(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200101001 涂勇, 王小将, 封悦科. 2004.浅析攀枝花市酸雨污染特征及成因[J].四川环境, 23(5): 36-39. http://d.old.wanfangdata.com.cn/Periodical/schj200405011 文志英, 井竹君. 1995.分形几何和分维数简介[J].数学的实践与认识, (4): 20-34. 谢和平. 1996.分形——岩石学导论[M].北京:科学出版社. 杨昂, 孙波, 赵其国. 1999.中国酸雨的分布、成因及其对土壤环境的影响[J].土壤, (1): 13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900670537 杨坤光, 袁晏明. 2009.地质学基础[M].武汉:中国地质大学出版社. 曾志雄, 孔令伟, 田海, 等. 2017.膨胀岩崩解特性的干湿循环效应与粒度熵表征[J].岩土力学, 38(7): 1983-1989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707018 张丹, 陈安强, 刘刚才. 2012.紫色泥岩水热条件下崩解过程的分维特性[J].岩土力学, 33(5): 1341-1346. http://d.old.wanfangdata.com.cn/Periodical/ytlx201205010 张新民, 柴发合, 王淑兰, 等. 2010.中国酸雨研究现状[J].环境科学研究, 23(5): 527-532. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201005001 赵明华, 邓觐宇, 曹文贵. 2003.红砂岩崩解特性及其路堤填筑技术研究[J].中国公路学报, 16(3): 1-5. http://d.old.wanfangdata.com.cn/Periodical/zgglxb200303001 赵晓彦, 李昆鹏, 李珣, 等. 2019.辉长岩质边坡酸雨致滑机理试验研究[J].工程地质学报, 27(1): 152-161. doi: 10.13544/j.cnki.jeg.2018-458 中华人民共和国行业标准编写组. 2007.水电水利工程岩石试验规程(DLIT 5368-2007)[S].北京: 中国电力出版社. -