DEFORMATION ANALYSIS OF WODA VILLAGE OLD LANDSLIDE IN JINSHA RIVER BASIN USING SBAS-INSAR TECHNOLOGY
-
摘要: 近年来突发性高位滑塌灾害日益频发,造成恶劣影响。这类地质灾害调查难度高、隐蔽性强,单靠群测群防和地质调查难以解决灾害的防治问题。随着雷达遥感卫星数据质量的不断提升,合成孔径干涉雷达测量(InSAR)中的SBAS-InSAR技术为特大型老滑坡灾前形变探测提供了新的技术途径。利用SBAS-InSAR技术对金沙江流域沃达村滑坡进行地表形变监测,获取了2017年3月30日至2019年9月28日内的形变结果,划定了强烈形变区(Ⅰ雷达)、均匀形变区(Ⅱ雷达),分析了滑坡复活区整体和局部滑塌地表形变速率、累积位移变化趋势和主裂缝形变情况。同时实地进行了工程地质调查和复核,发现老滑坡复活区变形迹象与SBAS-InSAR技术解译成果有着较好的一致性。表明SBAS-InSAR技术在复杂山区地质灾害监测预警领域有较为广阔的应用前景,为类似老滑坡监测预警提供了新的思路与借鉴。
-
关键词:
- 沃达村 /
- 老滑坡 /
- SBAS-InSAR /
- 形变分析 /
- 复核验证
Abstract: In recent years, unexpected high-level landslides have been increasing, resulting in adverse effects. This kind of geological hazard investigation is very difficult and concealed. It is difficult to solve the problem of disaster prevention and control by group survey and geological investigation alone. With the continuous improvement of the quality of radar remote sensing satellite data, the SBAS-InSAR technology in synthetic aperture Interferometric Radar(InSAR)provides a new technical approach for deformation detection of large-scale old landslides before disaster. The surface deformation of Wodacun landslide in Jinsha River Basin is monitored by SBAS-InSAR technology. The deformation results from March 30, 2017 to September 28, 2019 are obtained. Strong deformation area(Ⅰradar) and uniform deformation area(Ⅱradar) are delineated. The surface deformation rate, cumulative displacement trend and main crack deformation of the whole and local landslide in the revived area are analyzed. At the same time, the engineering geological survey and review are carried out on the spot. It is found that the resurrection and deformation signs of the old landslide are in good agreement with the interpretation results of the SBAS-InSAR technology. It is clear that the SBAS-InSAR technology has broad application prospects in the field of early warning and monitoring of geological disasters in complex mountain areas, and provides new ideas and references for monitoring and early warning similar to old landslides.-
Key words:
- Woda village /
- Old landslide /
- SBAS-InSAR /
- Deformation analysis /
- Verification
-
图 7 雷达视线方向和坡度方向几何示意图(Cascini et al., 2010)
Figure 7. Geometric sketches of radar line- of -sight direction and slope direction(Cascini et al., 2010)
表 1 沃达村滑坡Sentinel 1A数据列表
Table 1. Data list of sentinel 1 in Dawo Village landslide
序号 成像时间 成像
模式极化
方式累积时
间基线
/d累积空
/m1 20170330 IW VV 0 0 2 20170423 IW VV 24 -46.119 3 20170517 IW VV 48 -50.186 4 20170610 IW VV 72 77.826 5 20170704 IW VV 96 40.558 6 20170809 IW VV 132 -10.291 7 20170902 IW VV 156 -39.573 8 20170926 IW VV 180 -50.931 9 20171020 IW VV 204 114.923 10 20171113 IW VV 228 -24.411 11 20171207 IW VV 252 50.346 12 20171231 IW VV 276 63.293 13 20180124 IW VV 300 -165.698 14 20180217 IW VV 324 27.433 15 20180313 IW VV 348 30.264 16 20180406 IW VV 372 -6.096 17 20180430 IW VV 396 23.623 18 20180524 IW VV 420 -147.052 19 20180617 IW VV 444 116.508 20 20180711 IW VV 468 43.829 21 20180723 IW VV 492 -86.624 22 20180816 IW VV 516 -15.263 23 20180909 IW VV 540 64.119 24 20181003 IW VV 564 -43.180 25 20181027 IW VV 588 35.953 26 20181120 IW VV 612 26.433 27 20181214 IW VV 636 -18.007 28 20190107 IW VV 660 31.303 29 20190131 IW VV 684 -57.897 30 20190224 IW VV 708 -62.838 31 20190320 IW VV 732 61.137 32 20190413 IW VV 756 -40.041 33 20190507 IW VV 780 81.387 34 20190531 IW VV 804 -93.348 35 20190624 IW VV 828 27.419 36 20190718 IW VV 852 18.360 37 20190811 IW VV 876 -105.069 38 20190904 IW VV 900 36.953 39 20190928 IW VV 924 41.097 -
Berardino P, Fornaro G, Lanari R, et al. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience & Remote Sensing, 40(11): 2375-2383. http://cn.bing.com/academic/profile?id=9267c9b76553eb4232501bf4d2f123df&encoded=0&v=paper_preview&mkt=zh-cn Cascini L, Fornaro G, Peduto D. 2010. Advanced low-and full-resolution D-InSAR map generation for slow-moving landslide analysis at different scales[J].Engineering Geology, 112(1): 29-42. https://www.sciencedirect.com/science/article/abs/pii/S0013795210000049 Casu F, Manzo M, Lanari R. 2000. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from D-InSAR data[J].Remote Sensing of Environment, 102(3): 195-210. https://www.sciencedirect.com/science/article/pii/S0034425706000526 Colesanti C, Wasowski J. 2006. Investigating landslides with space-borne Synthetic Aperture Radar(SAR)interferometry[J].Engineering Geology, 88(3): 173-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76e04e80aa3b1d5c4a0e9e7422064125 Dai K R, Zhuo G C, Xu Q, et al. 2019. Tracing the pre-failure two-dimensional surface displacements of Nanyu Landslide, Gansu province with radar interferometry[J].Geomatics and Information Science of Wuhan University, 44(12): 1778-1786. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201912007 Feng W K, Zhang G Q, Bai H L, et al. 2019. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinshan River on October 11, 2018[J]. Journal of Engineering Geology, 27(2): 415-425. He X F, He M. 2012. InSAR earth observation data processing method and comprehensive measurement[M].Beijing: Science Press. Herrera G, Gutierrez F, Garcia-Davalillo J C, et al. 2013. Multi-sensor advanced DinSAR monitoring of very slow landslides: The Tena Valley case study(Central Spanish Pyrenees)[J]. Remote Sensing of Environment, 128(none): 31-43. http://cn.bing.com/academic/profile?id=e640af8be005cb07dd21f79ec3c05266&encoded=0&v=paper_preview&mkt=zh-cn Kang Y. 2016. Application of InSAR technology in landslide detection and monitoring in southwest mountainous areas[D].Xi'an: Chang'an University. Li L J, Yao X, Zhou Z K, et al. 2017. The deformation characteristics of a large landslide before and afire impoundment in the Xiluodu reservoir area based on InSAR technology[J].Journal of Engineering Geology, 25 (S1): 458-462. Liu X Y, Yang Z H, Guo C B, et al. 2017. Study of slow-moving landslide characteristics based on the SBAR-InSAR in the Xianshuihe fault zone[J].Geoscience, 31(5): 965-977. http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201705008.htm Mo Y J, Wu Y, Liu X W. 2018. Monitoring the ground subsidence in Xiaojin County, Sichuan province based on small baseline subset technique[J].Engineering of Surveying and Mapping, 27(11): 46-50. http://d.old.wanfangdata.com.cn/Periodical/chgc201811009 Nie B Q. 2018. Landslide deformation detection and identification based on InSAR technology——A case of Danba County[D]. Chengdu: Chengdu University of Technology. Tre altamira. 2017. Data in focus: precursor of Maoxian landslide measured from space[EB/OL].http://tre-altamira.com/news/data-focus-precursor-maoxian-landslide-measured-space/.2017-06-29. Wang J. 2018. Long-term spaceborne InSAR technology landslide geological disaster monitoring research[D].Beijing: Beijing Jiaotong University. Xu J Q, Ma T, Lu Y K, et al. 2019. Land subsidence monitoring in North Henan plain based on SBAS-InSAR technology[J].Journal of Jilin University(Earth Science Edition), 49(4): 1182-1191. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201904025 Xu Q, Li W L, Dong X J, et al. 2017. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and failure mechanism[J].Chinese Journal of Rock Mechanics and Engineering, 36(11): 2612-2628. Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 26(6): 1534-1551. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017 Yu R. 2014. Xi'an County landslide monitoring research based on short baseline(SBAS)technology[D].Nanjing: Nanjing Normal University. Zhang J, Feng D X, Qi W, et al. 2018. Monitoring land subsidence in Panjin region with SBAS-InSAR method[J].Journal of Engineering Geology, 26(4): 999-1007. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201804024 Zhang Y. 2018. Surface deformation monitoring based on InSAR technology and early identification of landslide[D].Lanzhou: Lanzhou University. Zhao C Y, Zhang Q, Zhang J. 2011. Deformation monitoring of ground fissure with SAR inter-ferometry in Qingxu, Shanxi province[J].Journal of Engineering Geology, 19(1): 70-75. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201101014.htm 戴可人, 卓冠晨, 许强, 等. 2019.雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J].武汉大学学报(信息科学版):44(12): 1778-1786. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201912007 冯文凯, 张国强, 白慧林, 等. 2019.金沙江"10 ·11"白格特大型滑坡形成机制及发展趋势初步分析[J].工程地质学报, 27(2): 415-425. doi: 10.13544/j.cnki.jeg.2018-392 何秀凤, 何敏. 2012. InSAR对地观测数据处理方法与综合测量[M].北京:科学出版社. 康亚. 2016. InSAR技术在西南山区滑坡探测与监测的应用[D].西安: 长安大学. 李凌婧, 姚鑫, 周振凯, 等. 2017.溪洛渡库区某大型滑坡蓄水前后变形特征InAR分析[J].工程地质学报, 25 (S1): 458-462. doi: 10.13544/j.cnki.jeg.2017.s1.071 刘筱怡, 杨志华, 郭长宝, 等. 2017.基于SBAS-InSAR的鲜水河断裂带蠕滑型滑坡特征研究[J].现代地质, 31(5): 965-977. doi: 10.3969/j.issn.1000-8527.2017.05.008 莫玉娟, 吴洋, 刘学武. 2018.基于SBAS技术的四川阿坝州小金县地表形变监测[J].测绘工程, 27(11): 46-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chgc201811009 聂兵其. 2018.基于InSAR的滑坡形变探测及隐患识别研究——以丹巴县城区为例[D].成都: 成都理工大学. 许军强, 马涛, 卢意恺, 等. 2019.基于SBAS-InSAR技术的豫北平原地面沉降监测[J].吉林大学学报(地球科学版), 49(4): 1182-1191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201904025 许强, 李为乐, 董秀军, 等. 2017.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 36(11): 2612-2628. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002 许强, 郑光, 李为乐, 等. 2018.2018年10月和11月金沙江白格两次滑坡—堰塞堵江事件分析研究[J].工程地质学报, 26(6): 1534-1551. doi: 10.13544/j.cnki.jeg.2018-406 余睿. 2014.基于短基线(SBAS)技术的西和县滑坡监测研究[D].南京: 南京师范大学. 张静, 冯东向, 綦巍, 等. 2018.基于SBAS-InSAR技术的盘锦地区地面沉降监测[J].工程地质学报, 26(4): 999-1007. doi: 10.13544/j.cnki.jeg.2017-382 张毅, 2018基于InSAR技术的地表变形监测与滑坡早期识别研究[D].兰州: 兰州大学. 赵超英, 张勤, 张静. 2011.山西清徐地裂缝形变的InSAR监测分析[J].工程地质学报, 19(1): 70-75. doi: 10.3969/j.issn.1004-9665.2011.01.011 -