有机质含量对磷酸镁水泥固化土性质的影响研究

俞良晨 闫超 郭书兰 阎长虹 李想林

俞良晨, 闫超, 郭书兰, 等. 2020. 有机质含量对磷酸镁水泥固化土性质的影响研究[J]. 工程地质学报, 28(2): 335-343. doi: 10.13544/j.cnki.jeg.2019-416
引用本文: 俞良晨, 闫超, 郭书兰, 等. 2020. 有机质含量对磷酸镁水泥固化土性质的影响研究[J]. 工程地质学报, 28(2): 335-343. doi: 10.13544/j.cnki.jeg.2019-416
Yu Liangchen, Yan Chao, Guo Shulan, et al. 2020. Study on the effect of organic content on properties of magnesium phosphate cement solidified soil[J]. Journal of Engineering Geology, 28(2): 335-343. doi: 10.13544/j.cnki.jeg.2019-416
Citation: Yu Liangchen, Yan Chao, Guo Shulan, et al. 2020. Study on the effect of organic content on properties of magnesium phosphate cement solidified soil[J]. Journal of Engineering Geology, 28(2): 335-343. doi: 10.13544/j.cnki.jeg.2019-416

有机质含量对磷酸镁水泥固化土性质的影响研究

doi: 10.13544/j.cnki.jeg.2019-416
基金项目: 

江苏省科技厅社会发展面上项目 BE2019705

江苏省地质矿产勘查局科技项目 2017-KY-1

详细信息
    作者简介:

    俞良晨(1995-),男,硕士生,主要从事城市环境岩土工程、边坡工程方向的研究. E-mail: ylc1203@126.com

    通讯作者:

    阎长虹(1959-),男,博士,教授,博士生导师,从事水文地质工程地质、城市环境岩土工程科研教学工作. E-mail: yanchh@nju.edu.cn

  • 中图分类号: P642.13+9

STUDY ON THE EFFECT OF ORGANIC CONTENT ON PROPERTIES OF MAGNESIUM PHOSPHATE CEMENT SOLIDIFIED SOIL

Funds: 

the Social Development Project of Jiangsu Science and Technology Department BE2019705

the Science and Technology Project of Jiangsu Geology & Mineral Exploration Bureau 2017-KY-1

  • 摘要: 许多重要的软土工程譬如基坑、路基工程在破坏后需要快速修复,磷酸镁水泥的出现很好地满足了这一现代建设的要求,但不同地区软土的有机质含量不同,而有机质的含量对固化土的性质有着重要影响。为了研究磷酸镁水泥加固不同有机质含量软土的加固规律,本文通过向烘干后的软土中添加腐殖酸,人为制备不同有机质含量的土样,并取相同条件下PO水泥加固软土作对比,通过相关力学试验得到以下规律:两种水泥在加固不同含量有机质软土的过程中,加固效果都会随着有机质含量的升高而逐渐降低;磷酸镁水泥在快速修复和凝结方面明显优于PO水泥,但磷酸镁水泥中长期加固有机质软土的效果却不及PO水泥。同时利用SEM试验对得到的规律进行了解释并分析其微结构演化特征。该研究成果独到地分析了有机质含量变化对磷酸镁水泥加固效果的影响,证明了磷酸镁水泥可以应用于软土的抢修工程建设中,对加固软土工程具有指导和借鉴意义。
  • 图  1  固化土应力-应变曲线

    a.磷酸镁水泥固化土应力-应变曲线(7 d);b. PO水泥固化土应力-应变曲线(7 d);c.磷酸镁水泥固化土应力-应变曲线(14 d);d. PO水泥固化土应力-应变曲线(14 d);e.磷酸镁水泥固化土应力-应变曲线(28 d);f. PO水泥固化土应力-应变曲线(28 d)

    Figure  1.  Stress-strain curve of solidified soil

    图  2  剪切位移与剪应力

    Figure  2.  Shear displacement and shear stress

    图  3  竖向压力对应的抗剪强度

    Figure  3.  The shear strength corresponding to vertical pressure

    图  4  磷酸镁水泥固化土SEM图片

    Figure  4.  SEM of magnesium phosphate cement solidified soil

    图  5  固化土水化SEM图片

    Figure  5.  SEM of hydration of solidified soil

    图  6  磷酸镁水泥固化土SEM图片

    Figure  6.  SEM of magnesium phosphate cement solidified soil

    图  7  PO水泥固化土10 000倍SEM图片

    Figure  7.  10 000 times SEM image of PO cement solidified soil

    图  8  两种水泥加固效果10 000倍SEM图片

    Figure  8.  Two kinds of cement reinforcement effect on 10 000 times SEM image

    表  1  软土的物理力学性质指标

    Table  1.   Physico-mechanical indices of soft soil samples

    天然密度
    /g·cm-3
    土粒
    相对密度
    含水率
    /%
    液限
    /%
    塑限
    /%
    塑性
    指数
    液性
    指数
    孔隙率压缩模量
    /MPa
    压缩系数
    /MPa-1
    黏粒
    /%
    有机质
    /%
    1.812.7039.74522230.680.631.7020.82641.30.3
    下载: 导出CSV

    表  2  磷酸镁水泥组成

    Table  2.   Composition of magnesium phosphate cement

    组分氧化镁(M)磷酸二氢钾(P)硼砂(B)
    比例2051
    下载: 导出CSV

    表  3  PO水泥和磷酸镁水泥固化土无侧限抗压强度试验结果

    Table  3.   Test results of unconfined compressive strength of PO cement and magnesium phosphate cement solidified soil

    编号腐殖酸含量
    /%
    无侧限抗压强度/kPa
    7 d14 d28 d
    磷酸镁水泥PO水泥磷酸镁水泥PO水泥磷酸镁水泥PO水泥
    10497.48253.96635.31995.28787.731373.27
    23417.89190.78578.68725.25715.411131.86
    36371.28162.85423.85611.23555.221008.41
    49374.94138.91405.86421.93575.59781.71
    512370.52130.33383.26586.35565.96717.76
    下载: 导出CSV

    表  4  PO固化土和磷酸镁固化土黏聚力试验结果

    Table  4.   Test results of cohesion of PO-stabilized soils and magnesium phosphate-stabilized soils

    编号腐殖酸含量
    /%
    黏聚力c/kPa
    7 d14 d28 d
    磷酸镁水泥PO水泥磷酸镁水泥PO水泥磷酸镁水泥PO水泥
    10179.83142.26202.54242.26250.00525.65
    23173.54118.12193.35218.12235.50452.69
    36169.07106.35179.80196.35230.12360.02
    49165.48104.71174.73194.71226.34359.03
    512164.45100.36170.14180.36216.97345.10
    下载: 导出CSV

    表  5  PO固化土和磷酸镁固化土内摩擦角试验结果

    Table  5.   Test results of internal friction angle of PO-stabilized soil and magnesium phosphate-stabilized soil

    编号腐殖酸含量
    /%
    内摩擦角φ/(°)
    7 d14 d28 d
    磷酸镁水泥PO水泥磷酸镁水泥PO水泥磷酸镁水泥PO水泥
    1029.6927.1831.5335.9432.0640.10
    2327.2724.1629.0033.5030.7535.11
    3623.1220.6725.9630.5027.0633.98
    4921.9619.4523.3728.0024.0032.23
    51217.2015.4119.0024.5020.3124.98
    下载: 导出CSV

    表  6  物相统计及标记

    Table  6.   Phase statistics and markers

    名称化学式标记
    绿泥石(Mg,Fe2+,Fe3+,Al)6((Si,Al)4O10)(OH)8Chl
    高岭石Al2Si2O5(OH)4K
    水化磷酸镁Mg3(PO4)2MP
    钾磷酸盐MgKPO4·6H2OMKP
    水滑石Mg6Al2(CO3)(OH)16·4H2OHT
    钙矾石3CaO·Al2O3·3CaSO4·32H2OAFt
    水化硅酸钙CaO·Al2O3·10H2OCSH
    方镁石MgOM
    下载: 导出CSV
  • Bai J. 2015. Optimization plan of reinforcement on deep dredger fill of Soft ground[J]. Journal of Engineering Geology, 23(2): 265-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201502013
    Chen H E, Wang Q. 2005. Influences of organic matter on the effect of consolidating soft soil with cement[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (S2): 5816-5821. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2005S2095.htm
    Du G Y, Wu C W, Zhang G Z, et al. 2018. Discussion on deep marine clay foundation treatment method of riverbank highway extension[J]. Journal of Engineering Geology, 26(6): 1681-1689. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806032
    Soudée E, Péra J. 2000. Mechanism of setting reaction in magnesia-phosphate cements[J]. Cement & Concrete Research, 30(2): 315-321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29e25bfdca219858d92be9fe670aaa48
    Fan Z P, Zhu W, Zhang C L. 2005. Experimental study on influence of organic matter content on solidified dredging[J]. Rock and Soil Mechanics, 26(8): 1327-1334. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200508027
    Huang Y H, Zhu W, Zhou X Z, et al. 2012. Experimental study of compressibility behavior of solidified dredged material[J]. Rock and Soil Mechanics, 33(10): 2923-2928. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201210008.htm
    Jiang H Y, Zhang L M. 2002. Study on properties of super-fast-hard phosphate concrete repair materials with pavement[J]. Highway, (3): 88-89.
    Jin C, Yang Q B. 2013. Effects of fly ash on properties of phosphate-based material for rapid repair[J]. Fly Ash Comprehensive Utilization, (2): 36-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmhzhly201302009
    Lei H Y, Jia Y F. 2013. Shear creep property and constitutive model for soft soil of littoral area in Tianjin[J]. Journal of Engineering Geology, 21(3): 416-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201303012
    Liang S H, Wang M, Zhang L. 2015. Experimental study of mechanical properties and microstructures on Nansha soft soil stabilised with cement[J]. Materials Research Innovations, 19 (S8): 518-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1179/1432891715Z.0000000001867
    Liu J H, Zhou X T, Luo Z Q. 2019. Study on preparation and formation mechanism of ferronickel slag-based magnesium phosphate cement[J/OL]. Journal of Building Materials, http://kns.cnki.net/kcms/detail/31.1764.tu.20190929.1026.002.html.
    Liu N, Chen B. 2016. Experimental research on magnesium phosphate cements containing alumina[J]. Construction & Building Materials, 121 : 354-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0198a83fab43ea981967c22200ffcad6
    Lu H B, Wang R, Zhao Y L, et al. 2003. Study of structure characteristics evolution of soft clay by pore size distribution test[J]. Rock and Soil Mechanics, 24(4): 573-578. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200304018
    Qin Z H, Ma C, Zheng Z Q, et al. 2020. Effects of metakaolin on properties and microstructure of magnesium phosphate cement[J]. Construction and Building Materials, 234: 117353. doi: 10.1016/j.conbuildmat.2019.117353
    Shao S, He H B, Zhang W, et al. 2017. Soil organic matter formation and origin: a review[J]. Journal of Jilin Normal University(Natural Science Edition), 38(1): 126-130. http://d.old.wanfangdata.com.cn/Periodical/tryhj201309027
    Wang B X, Li X B, Du D J, et al. 2009. Test and study on the solidifying Tianjin marine soft soil with alkalescent cement additive[J]. Journal of Engineering Geology, 17(3): 426-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200903024
    Wang D C. 2003. Integration of grinding and mixing: the development strategy of China's commercial concrete industry[J]. Concrete, (2): 20-23.
    Wang H T, Cao J H. 2007. Study on setting time of Magnesia-Phosphate cement[J]. Journal of Logistical Engineering University, 23(2): 84-87. http://d.old.wanfangdata.com.cn/Conference/9081288
    Wang H T, Cao J H, Xue M, et al. 2009. Study on the new phosphate cement repair material with super rapid hardening[J]. New Building Materials, 7 : 49-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxjzcl200907016
    Yang A W, Zhang Z D, Li X W, et al. 2017. Microscopic structure evolution parameters of soft dredger fill in stage of safe operation hyperplasia with preconsolidation effect[J]. Journal of Engineering Geology, 25(2): 284-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201702003
    Yang Q B, Zhang S Q, Yang Q S, et al. 2000. Properties of new fast-hardening phosphate repair materials[J]. China Concrete and Cement Products, (4): 8-11.
    Zheng J, She C G, Yan C H, et al. 2017. Engineering geological mechanism on deformation of Nanjing metro tunnel in operating[J]. Journal of Engineering Geology, 25(1): 199-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701026
    柏炯. 2015.冲填软土地基深层加固的优化方案分析[J].工程地质学报, 23(2): 265-271. doi: 10.13544/j.cnki.jeg.2015.02.011
    陈慧娥, 王清. 2005.有机质对水泥加固软土效果的影响[J].岩石力学与工程学报, 24 (S2): 5816-5821. http://d.old.wanfangdata.com.cn/Conference/6197752
    杜广印, 吴春伟, 张国柱, 等. 2018.深厚海相软土临河公路扩建地基处理方法探讨[J].工程地质学报, 26(6): 1681-1689. doi: 10.13544/j.cnki.jeg.2017-553
    范昭平, 朱伟, 张春雷. 2005.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学, 26(8): 1327-1334. doi: 10.3969/j.issn.1000-7598.2005.08.027
    黄英豪, 朱伟, 周宣兆, 等. 2012.固化淤泥压缩特性的试验研究[J].岩土力学, 33(2): 2923-2928. http://d.old.wanfangdata.com.cn/Periodical/ytlx201210007
    姜洪义, 张联盟. 2002.超快硬磷酸盐混凝土路面修补材料性能的研究[J].公路, (3): 87-89. doi: 10.3969/j.issn.0451-0712.2002.03.022
    金城, 杨全兵. 2013.粉煤灰对磷酸盐快速修补材料性能的影响[J].粉煤灰综合利用, (2): 36-37. doi: 10.3969/j.issn.1005-8249.2013.02.009
    雷华阳, 贾亚芳. 2013.滨海软土剪切蠕变特性研究[J].工程地质学报, 21(3): 416-421. doi: 10.3969/j.issn.1004-9665.2013.03.012
    刘佳辉, 周新涛, 罗中秋. 2019.镍铁渣基磷酸镁水泥的制备及其机理研究[J/OL].建筑材料学报, http://kns.cnki.net/kcms/detail/31.1764.tu.20190929.1026.002.html.
    吕海波, 汪稔, 赵艳林, 等. 2003.软土结构性破损的孔径分布试验研究[J].岩土力学, 24(4): 573-578. doi: 10.3969/j.issn.1000-7598.2003.04.018
    邵帅, 何红波, 张威, 等. 2017.土壤有机质形成与来源研究进展[J].吉林师范大学学报(自然科学版), 38(1): 126-130. http://d.old.wanfangdata.com.cn/Periodical/slxk-zrkx201701023
    王宝勋, 李夕兵, 杜东菊, 等. 2009.应用碱性水泥外掺剂固化天津海积软土的试验研究[J].工程地质学报, 17(3): 426-432. doi: 10.3969/j.issn.1004-9665.2009.03.024
    王定才. 2003.粉磨-搅拌一体化:中国商品混凝土产业的发展策略[J].混凝土, (2): 20-23. doi: 10.3969/j.issn.1002-3550.2003.02.010
    汪宏涛, 曹巨辉. 2007.磷酸盐水泥凝结时间研究[J].后勤工程学院学报, 23(2): 84-87. doi: 10.3969/j.issn.1672-7843.2007.02.021
    汪宏涛, 曹巨辉, 薛明, 等. 2009.新型超快硬磷酸盐水泥修补材料的研究[J].新型建筑材料, 7 : 49-51. http://d.old.wanfangdata.com.cn/Periodical/xxjzcl200907016
    杨爱武, 张振东, 李潇雯, 等. 2017.考虑前期固结影响的吹填软土安全运营阶段微结构演化特征[J].工程地质学报, 25(2): 284-291. doi: 10.13544/j.cnki.jeg.2017.02.003
    杨全兵, 张树青, 杨钱荣, 等. 2000.新型快硬磷酸盐修补材料性能[J].混凝土与水泥制品, (4): 8-11. doi: 10.3969/j.issn.1000-4637.2000.04.002
    郑军, 佘才高, 阎长虹, 等. 2017.南京地铁运营隧道变形的工程地质机理研究[J].工程地质学报, 25 (1): 199-208. doi: 10.13544/j.cnki.jeg.2017.01.026
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  1671
  • HTML全文浏览量:  233
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-11-27
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回