湿度影响下莫高窟壁画地仗层吸附水及吸力变化特征研究

李凤洁 王旭东 郭青林

李凤洁, 王旭东, 郭青林. 2021. 湿度影响下莫高窟壁画地仗层吸附水及吸力变化特征研究[J]. 工程地质学报, 29(4): 1188-1198. doi: 10.13544/j.cnki.jeg.2019-455
引用本文: 李凤洁, 王旭东, 郭青林. 2021. 湿度影响下莫高窟壁画地仗层吸附水及吸力变化特征研究[J]. 工程地质学报, 29(4): 1188-1198. doi: 10.13544/j.cnki.jeg.2019-455
Li Fengjie, Wang Xudong, Guo Qinglin. 2021. Adsorbed moisture feature and suction variation characteristics of earthen plaster in Mogao Grottoes under influence of humidity[J]. Journal of Engineering Geology, 29(4): 1188-1198. doi: 10.13544/j.cnki.jeg.2019-455
Citation: Li Fengjie, Wang Xudong, Guo Qinglin. 2021. Adsorbed moisture feature and suction variation characteristics of earthen plaster in Mogao Grottoes under influence of humidity[J]. Journal of Engineering Geology, 29(4): 1188-1198. doi: 10.13544/j.cnki.jeg.2019-455

湿度影响下莫高窟壁画地仗层吸附水及吸力变化特征研究

doi: 10.13544/j.cnki.jeg.2019-455
详细信息
    通讯作者:

    李凤洁(1989-), 女, 博士生, 主要从事岩土质文物保护相关研究. E-mail: lifj14 @ lzu.edu.cn

  • 中图分类号: TUA42

ADSORBED MOISTURE FEATURE AND SUCTION VARIATION CHARAC ̄TERISTICS OF EARTHEN PLASTER IN MOGAO GROTTOES UNDER INFLUENCE OF HUMIDITY

  • 摘要: 莫高窟气候干燥,窟内壁画地仗层常处于低含水率、高吸力的状态,受到洞窟环境湿度波动的影响较大。为了进一步了解湿度影响下地仗层土体中吸附水以及吸力变化特征,本文通过蒸汽吸附法测试莫高窟不同地仗层高吸力段内的土水特征曲线,并且根据测试结果分析土体中由于范德华力与毛细凝聚作用产生的不同吸力的变化特征;同时进一步利用蒸汽吸附法测试了含NaCl地仗层土水特征曲线并探讨水汽吸附过程中渗透吸力特征;此外利用热重分析方法测试地仗层土体中在范德华力与毛细凝聚作用下所吸附水分的特征。结果表明:地仗层水汽吸附过程中土体内大部分基质吸力来自于毛细凝聚作用,土颗粒分子间范德华力仅在含水率极低的情况下为土体提供比较明显的吸力,湿度影响下地仗层水汽吸附过程中土体内渗透吸力仅在外界环境湿度大于地仗层中盐分的潮解临界湿度时才比较明显;地仗层土体所吸附的水分大部分以弱结合水形式存在,并且地仗层中澄板土含量越高,弱结合水临界含水率越大。结论可以为湿度影响下的壁画病害机理以及地仗层中水汽运移等问题的研究提供理论基础。
  • 图  1  地仗层试样

    Figure  1.  The earthen plaster samples

    图  2  蒸汽吸附试验示意图

    Figure  2.  Schematic diagram of vapor adsorption test

    图  3  地仗层试样中不同吸力

    a. DZ1;b. DZ2;c. DZ3;d. DZ4

    Figure  3.  Different types of suction in plaster samples

    图  4  不同土砂比地仗层试样T-G曲线

    a. DZ1;b. DZ2;c. DZ3

    Figure  4.  T-G curves of plaster samples with different ratios of Dengban soil and sand

    图  5  不同湿度下吸湿平衡试样DZ2的T-G曲线

    a. 平衡湿度100%;b. 平衡湿度75%;c. 平衡湿度55%

    Figure  5.  T-G curves of plaster samples DZ2 saturated at different relative humidity

    图  6  不同含量NaCl地仗层试样总吸力-含水率曲线

    Figure  6.  The total suction-water content curve of plaster samples with different contents of NaCl

    表  1  澄板土颗粒粒径分析结果

    Table  1.   Particle size analysis results of Dengban soil

    颗粒粒径/mm 含量/%
    0.25~0.5 2
    0.075~0.25 4
    0.05~0.075 7
    0.005~0.05 71
    0.002~0.005 15
    0.001~0.002 1
    <0.001 0
    下载: 导出CSV

    表  2  澄板土矿物成分

    Table  2.   Mineral component of Dengban soil

    矿物成分 含量/%
    绿泥石 14.2
    白云母 7.9
    长石 15.8
    白云石 9.3
    方解石 14.0
    石英 33.6
    闪石 5.2
    下载: 导出CSV

    表  3  地仗层试样编号及配比

    Table  3.   Sample number and proportion of plaster samples

    试样编号 试样配比
    澄板土/%
    <0.075 mm
    细砂/%
    0.075~0.25 mm
    中砂/%
    0.25~0.5 mm
    NaCl含量/%
    DZ1 80 10 10 0
    DZ2 60 20 20 0
    DZ3 40 30 30 0
    DZ4 20 40 40 0
    C-1 60 20 20 1
    C-2 60 20 20 2
    C-3 60 20 20 3
    下载: 导出CSV

    表  4  饱和盐溶液表面相对湿度及对应吸力(20 ℃)

    Table  4.   Relative humidity and suction on the surface of the saturated salt solution(20 ℃)

    饱和盐溶液 相对湿度/% 吸力/MPa
    LiCl 11.31±0.31 295
    CH3COOK 23.11±0.25 198
    MgCl2 33.07±0.18 150.0
    K2CO3 43.16±0.33 114.2
    Mg(NO3)2 55.87±0.27 80.9
    NaBr 59.14±0.44 71.4
    NaCl 75.47±0.14 38.9
    KCl 85.11±0.29 21.9
    K2SO4 97.6±0.6 2.73
    H2O 100 趋近于0
    下载: 导出CSV

    表  5  澄板土以及地仗层试样土颗粒比表面积

    Table  5.   Surface area of Dengban soil and the plaster sample particles

    试样编号 比表面积/m2·g-1
    澄板土 19.6275
    DZ1 16.1789
    DZ2 13.2145
    DZ3 9.6225
    DZ4 6.5124
    下载: 导出CSV

    表  6  不同土砂比地仗层试样热失重分析结果

    Table  6.   Results of thermogravimetric analysis in plaster samples with different ratios of Dengban soil and sand

    试样编号 总含水率/% 弱结合水临界含水率/% 弱结合水含水率范围/% 弱结合水含量/%
    DZ1 6.60 1.51 1.51~6.34 4.83
    DZ2 4.81 1.00 1.00~4.57 3.57
    DZ3 3.66 0.68 0.68~3.51 2.83
    下载: 导出CSV

    表  7  不同湿度下饱和的地仗层试样DZ2热失重分析结果

    Table  7.   Thermogravimetric analysis results of plaster samples DZ2 saturated at different relative humidity

    饱和相对湿度/% 总含水率/% 弱结合水临界含水率/%
    100 4.81 1.00
    75 1.62 0.95
    55 1.29 1.01
    下载: 导出CSV

    表  8  地仗层试样弱结合水临界含水率对应的相对湿度与吸力值

    Table  8.   The corresponding values of relative humidity and suction for critical moisture content of weakly bound water in plaster samples

    试样编号 弱结合水临界含水率/% 弱结合水临界含水率对应相对湿度/% 总吸力/MPa 范德华吸力/MPa 毛细吸力/MPa
    DZ1 1.51 49 97 4.5 92.5
    DZ2 1.00 43 114 5.5 108.5
    DZ3 0.68 32 155 8.2 146.8
    下载: 导出CSV
  • Bergström L. 1997. Hamaker constants of inorganic materials[J]. Advances in Colloid and Interface Science, 70(1): 125-169.
    Campbell G S. 1988. Soil water potential measurement: An overview[J]. Irrigation Science, 9(4): 265-273. doi: 10.1007/BF00296702
    Cui Q, Shan Z W, Shui B W, et al. 2018. Study on material and production technology of murals in the Mogao grottoes in Dunhuang[J]. Relics and Museology, (2): 91-95.
    Grismer M E. 1987. Water vapor adsorption and specific surface[J]. Soil Science, 144(3): 233-236.
    Guo Q L. 2009. Origin of water and salts responsible for wall paintings disease at Dunhuang Mogao grottoe. [D]. Lanzhou: Lanzhou University.
    Guo X, Fu Q, Tian R, et al. 2016. Dynamic light scattering technology determination the hamaker constant of soil/clay colloids[J]. Journal of Southwest University(Natural Science), 38(6): 74-81.
    He L X, Wang X, Zhang Y J, et al. 2018. Model test study on steam diffusion law of unsaturated loess[J]. Journal of Engineering Geology, 26(5): 1265-1271.
    Huang W, Liu Q B, Xiang W, et al. 2018. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 40(7): 1267-1276.
    Iwamatsu M, Horii K. 1996. Capillary condensation and adhesion of two wetter surfaces[J]. Journal of Colloid & Interface Science, 182(2): 400-406.
    Li F, Wang X, Guo Q, et al. 2019. Moisture adsorption mechanism of earthen plaster containing soluble salts in the Mogao grottoes of China[J]. Studies in Conservation, 64(3): 159-173. doi: 10.1080/00393630.2018.1537351
    Li T L, Fan J W, Xi Y, et al. 2019. Analysis for effect of microstructure on SWCC of compacted loess[J]. Journal of Engineering Geology, 27(5): 1019-1026.
    Li Z X. 2005. Conservation of the wall paintings and colored statues of the grottoes on the silk road[M]. Beijing: Science Press.
    Liu H L, Wang X D, Zhang M Q, et al. 2016. Research on the characteristics of rainfall distribution and infiltration in Dunhuang Mogao Grottoes[J]. Sciences of Conservation and Archaeology, 28(2): 32-37.
    Lü X L, Zhang B, Zhang P. 2019. Laboratory ring shear tests for shear strength of sand and clay mixtures[J]. Journal of Engineering Geology, 27(5): 1110-1115.
    Ma T T, Wei C F, Chen P, et al. 2005. An experimental study of effect of NaCl solution on soil water characteristics[J]. Rock and Soil Mechanics, 36(10): 2831-2836.
    Nagata H, Shimoda S, Sudo T. 1974. On dehydration of bound water of sepiolite[J]. Clays and Clay Minerals, 22(3): 285-293. doi: 10.1346/CCMN.1974.0220310
    Or D, Tuller M. 1999. Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model[J]. Water Resources Research, 35(12): 3591-3605. doi: 10.1029/1999WR900262
    Philip J R. 1977. Unitary approach to capillary condensation and adsorption[J]. The Journal of Chemical Physics, 66(11): 5069-5075. doi: 10.1063/1.433814
    Qi G Q, Huang R Q. 2004. An universal mathematical model of soil-water characteristic curve[J]. Journal of Engineering Geology, 12(2): 182-186.
    Shi Z M, Liu W R, Peng M, et al. 2018. Experimental study on soil-water characteristic curve of reticulate red clay and its application in slope stability evaluation[J]. Journal of Engineering Geology, 26(1): 164-171.
    Su B M. 2010. Salting damages of Dunhuang murals and regular maintenance[J]. Dunhuang Research, (6): 14-16.
    Sun D A, Liu W J, Lü H B. 2014. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 35(12): 3345-3351.
    Sun D A, Zhang J Y, Song G S. 2013. Experimental study of soil-water characteristic curve of chlorine saline soil[J]. Rock and Soil Mechanics, 34(4): 955-960.
    Tang A M, Cui Y J. 2005. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 42(1): 287-296. doi: 10.1139/t04-082
    Tang D X. 1999. Rock and Soil Engineering[M]. Beijing: Geological Publishing House.
    Tuller M, Or D. 2005. Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 41(9): W09403 1-6.
    Wang P Q. 2001. The study for quantitative analysis of water absorbed on clays and their hydration mechanism[D]. Chengdu: Southwest Petroleum University.
    Wang T H, Li Y L, Su L J. 2014. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 36(5): 942-948.
    Xie G, Deng M Y, Zhang L. 2013. Thermal analysis and quantitative research method for clay bound water[J]. Drilling Fluid & Completion Fluid, 30(6): 1-4.
    Yan L, Zhang H Y, Lü Q F, et al. 2008. The model of moisture absorption-moisture liberation with the same temperature for grotto murals[J]. Dunhuang Research, (6): 58-62.
    Yuan J B. 2012. The Study for properties of bound water on clayey soils and their quantitative method[D]. Guangzhou: South China University of Technology.
    Zhang H Y, Yan G S, Wang X D. 2012. Laboratory test on moisture adsorption-desorption of, wall paintings at Mogao Grottoes, China[J]. Journal of Zhejiang University Science A: Applied Physics & Engineering, 13(3): 208-218.
    Zhang M Q, Zhang H Y, Zeng Z H, et al. 1995. Material composition and microstructure of the plaster layer in Mogao Grottoes[J]. Dunhuang Research, (3): 23-28.
    Zhang N, He M C, Guo Q L, et al. 2017. Water absorption of surrounding rocks of Mogao grottoes at Dunhuang and its influencing factors[J]. Journal of Engineering Geology, 25(1): 222-229.
    Zhang Z H, Li P, Li T L. 2016. Relationship between loess and bound water content and physical indicators[J]. Journal of Engineering Geology, 24 (S1): 1401-1406.
    Zhao H, Yan Z F, Bi W B, et al. 2018. Study on the moisture absorption isotherms of the simulation test block in Mogao Grottoes' plaster in Dunhuang[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 50(5): 704-707.
    Zhao T Y, Zhang H Y, Yan G S, et al. 2011. The soil-water characteristics of base coat in Mogao Grottoes Murals[J]. Dunhuang Research, (6): 36-42.
    崔强, 善忠伟, 水碧纹, 等. 2018. 敦煌莫高窟8窟壁画材质及制作工艺研究[J]. 文博, (2): 91-95. doi: 10.3969/j.issn.1000-7954.2018.02.014
    郭青林. 2009. 敦煌莫高窟壁画病害水盐来源研究[D]. 兰州: 兰州大学.
    郭霞, 傅强, 田锐, 等. 2016. 动态光散射技术测定土壤/黏土胶体的Hamaker常数[J]. 西南大学学报(自然科学版), 38(6): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201606016.htm
    何陇霞, 王旭, 张延杰, 等. 2018. 非饱和黄土水蒸气扩散规律模型试验研究[J]. 工程地质学报, 26(5): 156-162. doi: 10.13544/j.cnki.jeg.2018111
    黄伟, 刘清秉, 项伟, 等. 2018. 高吸力段黏土水合机制及微观持水模型研究[J]. 岩土工程学报, 40(7): 1267-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807017.htm
    李同录, 范江文, 习羽, 等. 2019. 击实黄土孔隙结构对土水特征的影响分析[J]. 工程地质学报, 27(5): 1019-1026. doi: 10.13544/j.cnki.jeg.2019045
    李最雄. 2005. 丝绸之路石窟壁画彩塑保护[M]. 北京: 科学出版社.
    刘洪丽, 王旭东, 张明泉, 等. 2016. 敦煌莫高窟降雨分布及入渗特征研究[J]. 文物保护与考古科学, 28(2): 32-37. doi: 10.3969/j.issn.1005-1538.2016.02.005
    吕玺琳, 张滨, 章澎. 2019. 砂与黏土混合物强度特性环剪试验研究[J]. 工程地质学报, 27(5): 1110-1115. doi: 10.13544/j.cnki.jeg.2019159
    马田田, 韦昌富, 陈盼, 等. 2015. NaCl溶液对土体持水特性影响的试验研究[J]. 岩土力学, 36(10): 2831-2836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510013.htm
    戚国庆, 黄润秋. 2004. 土水特征曲线的通用数学模型研究[J]. 工程地质学报, 12(2): 182-186. doi: 10.3969/j.issn.1004-9665.2004.02.012
    石振明, 刘巍然, 彭铭, 等. 2018. 网纹红土土水特征曲线试验研究及其在边坡稳定性评价中的应用[J]. 工程地质学报, 26(1): 164-171. doi: 10.13544/j.cnki.jeg.2018.01.018
    苏伯民. 2010. 敦煌壁画的盐害与日常维护[J]. 敦煌研究, (6): 14-16. doi: 10.3969/j.issn.1000-4106.2010.06.003
    孙德安, 刘文捷, 吕海波. 2014. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 35(12): 3345-3351. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412001.htm
    孙德安, 张谨绎, 宋国森. 2013. 氯盐渍土土-水特征曲线的试验研究[J]. 岩土力学, 34(4): 955-960. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304008.htm
    唐大雄, 等. 1999. 工程岩土学[M]. 北京: 地质出版社.
    王平全. 2001. 黏土表面结合水定量分析及水合机制研究[D]. 成都: 西南石油大学.
    王铁行, 李彦龙, 苏立君. 2014. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 36(5): 942-948. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm
    谢刚, 邓明毅, 张龙. 2013. 黏土结合水的热分析定量研究方法[J]. 钻井液与完井液, 30(6): 1-4. doi: 10.3969/j.issn.1001-5620.2013.06.001
    闫玲, 张虎元, 吕擎峰, 等. 2008. 洞窟壁画等温吸湿-放湿数理模型[J]. 敦煌研究, (6): 58-62. doi: 10.3969/j.issn.1000-4106.2008.06.012
    袁建滨. 2012. 黏土中结合水特性及其测试方法研究[D]. 广州: 华南理工大学.
    张明泉, 张虎元, 曾正中, 等. 1995. 莫高窟地仗层物质成分及微结构特征[J]. 敦煌研究, (3): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DHYJ503.002.htm
    张娜, 何满潮, 郭青林, 等. 2017. 敦煌莫高窟围岩吸水特性及其影响因素分析[J]. 工程地质学报, 25(1): 222-229. doi: 10.13544/j.cnki.jeg.2017.01.029
    张中华, 李萍, 李同录. 2016. 黄土结合水含量及其与物理指标的关系研究[J]. 工程地质学报, 24 (S): 1401-1406. doi: 10.13544/j.cnki.jeg.2016.s1.206
    赵欢, 闫增峰, 毕文蓓, 等. 2018. 敦煌莫高窟地仗层仿真试块等温吸湿性能实验研究[J]. 西安建筑科技大学学报(自然科学版), 50(5): 704-707. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201805013.htm
    赵天宇, 张虎元, 严耿升, 等. 2011. 莫高窟壁画地仗土的土水特性研究[J]. 敦煌研究, (6): 36-42. doi: 10.3969/j.issn.1000-4106.2011.06.007
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  45
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2020-05-25
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回