节理迹线中点密度修正方法的探讨

刘健 王驹 陈亮 云龙 王春萍

刘健, 王驹, 陈亮, 等. 2021. 节理迹线中点密度修正方法的探讨[J]. 工程地质学报, 29(4): 1148-1154. doi: 10.13544/j.cnki.jeg.2019-498
引用本文: 刘健, 王驹, 陈亮, 等. 2021. 节理迹线中点密度修正方法的探讨[J]. 工程地质学报, 29(4): 1148-1154. doi: 10.13544/j.cnki.jeg.2019-498
Liu Jian, Wang Ju, Chen Liang, et al. 2021. Discussion on correction methods of estimating midpoint density of joint traces[J]. Journal of Engineering Geology, 29(4): 1148-1154. doi: 10.13544/j.cnki.jeg.2019-498
Citation: Liu Jian, Wang Ju, Chen Liang, et al. 2021. Discussion on correction methods of estimating midpoint density of joint traces[J]. Journal of Engineering Geology, 29(4): 1148-1154. doi: 10.13544/j.cnki.jeg.2019-498

节理迹线中点密度修正方法的探讨

doi: 10.13544/j.cnki.jeg.2019-498
详细信息
    作者简介:

    刘健(1982-),男,博士,高级工程师,主要从事岩石力学和高放废物地质处置研究.E-mail: liujian0430@163.com

    通讯作者:

    刘健(1982-),男,博士,高级工程师,主要从事岩石力学和高放废物地质处置研究.E-mail: liujian0430@163.com

  • 中图分类号: TU45

DISCUSSION ON CORRECTION METHODS OF ESTIMATING MIDPOINT DENSITY OF JOINT TRACES

  • 摘要: 节理迹线中点密度是描述岩体露头节理分布特征的重要指标。由于露头或测窗尺寸的限制、节理迹长的差异以及露头面和节理面夹角的变化,常规的迹线中点密度计算方法通常包含尺寸、截长和角度误差。本文首先介绍了截长、尺寸和角度误差的修正原理,继而将角度误差修正系数引入到关联点密度计算方法中,提出了凸面测窗条件下同时修正截长、尺寸和角度误差的迹线中点密度计算方法。利用三维节理网络建模技术,模拟生成不同方位、不同大小和不同形状的测窗,系统分析了尺寸、截长和角度误差对迹线中点密度的影响,验证了新方法的有效性。最后,针对我国高放废物地质处置北山坑探设施的硐口岩体露头,实现了节理迹线中点密度分析。上述算例和应用表明,新方法可以有效地修正截长、尺寸和角度误差,可以为估算岩体节理分布密度提供更为可靠的依据。
  • 图  1  凸面测窗与节理迹线示意图

    Figure  1.  Sketch of joint traces and convex survey window

    图  2  三维节理网络模型

    Figure  2.  3D discrete joint network model

    图  3  不同方位的模拟露头示意图

    Figure  3.  Sketch of simulated outcrops with different orientations

    图  4  迹线中点密度计算结果

    a. 仅修正截长和尺寸误差的计算结果;b. 仅修正角度误差的计算结果;c. 联合修正截长、尺寸和角度误差的计算结果

    Figure  4.  Results of trace midpoint density

    图  5  露头照片、节理迹线图及测窗布置方案(实心点-测窗中心、圆形-测窗、直线段-节理迹线)

    a.山坑探设施开挖前硐口岩体露头照片;b. 测窗布置方案1;c. 测窗布置方案2

    Figure  5.  Outcrop photo,trace map and different designs of survey windows (solid point-center of survey window,circle-survey window,line-joint trace)

    图  6  不同位置测窗上的节理迹线中点密度

    Figure  6.  Results of midpoint density of joint traces obtained from survey windows at different locations

    图  7  不同测窗半径条件下的节理迹线中点密度

    Figure  7.  Results of midpoint density of joint traces under different survey radii

    表  1  节理产状分布模型和参数(刘健等,2018)

    Table  1.   Distribution law and parameters of joint occurrence

    优势组编号 节理数目比例 优势产状 Elliptical-Fisher产状模型
    倾角/(°) 倾向/(°) θ/(°) k R
    1 1.000 76.2 282.2 1.00 33.5 0.79
    2 0.478 71.0 172.3 89.5 14.7 1.24
    3 0.287 48.9 37.3 98.5 11.0 1.28
    下载: 导出CSV

    表  2  节理直径分布模型和参数(刘健等,2018)

    Table  2.   Distribution law and parameters of joint diameter

    优势组编号 平均直径/m 直径概率分布模型
    1 2.41 负指数
    2 2.64 负指数
    3 1.48 负指数
    下载: 导出CSV

    表  3  最大有效测窗条件下的迹线中点密度

    Table  3.   Density of trace mid-point at the biggest effective survey window

    公式编号 迹线中点密度/m-2
    水平露头 竖直东西向露头 竖直南北向露头
    (1) 0.184 0.162 0.122
    (2) 0.210 0.214 0.213
    (3) 0.199 0.203 0.203
    下载: 导出CSV
  • Bieniawski Z T. 1973. Engineering classification of jointed rock masses[J]. Journal of the South African Institution of Civil Engineering,15(12): 335-344. https://trid.trb.org/view.aspx?id=133062
    Chen J P, Wang Q, Xiao S F, et al. 1996. Probability estimation of mean trace length of discontinuities and its application[J]. Journal of Engineering Geology, 4(1): 8-13. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ601.001.htm
    Cruden D M. 1977. Describing the size of discontinuities[J]. International Journal of Rock Mechanics & Mining Sciences, 14(3): 133-137. http://www.sciencedirect.com/science/article/pii/0148906277900043
    Golder Associates Inc. 2018. FracMan User's Manual(Release 7.7)[Z]. Golder Associates Inc. : 203-204.
    Han Z H, Zhang L Q, Yuan G X. 2019. Rock mass quality assessment of borehole NRG01 in Bayannuorigong Alxa based on BQ-system[J]. Journal of Engineering Geology, 27(6): 1208-1215. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906002.htm
    Kulatilake P H S W, Wu T H. 1984. Estimation of mean trace length of discontinuities[J]. Rock Mechanics & Rock Engineering, 17(4): 215-232. http://adsabs.harvard.edu/abs/1984RMRE...17..215K
    Lanney N A. 1978. Statistical description of rock properties and sampling[D]. Massachusetts: Massachusetts Institute of Technology.
    Lei G W, Yang C H, Wang G B, et al. 2016. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201602004.htm
    Liu J, Chen L, Wang C P, et al. 2018. Case study on influence of outcrop orientation and area on joint density indexes[C]//Proceeding of the 7th symposium of underground disposal of waste. Shanghai: [s. n. ]: 77-82.
    Liu M, Huang R Q, Yan M, et al. 2016. Determination of weighted joint density(wJd) from inclined surface observations in rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 35(10): 1975-1989. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201610004.htm
    Mauldon M. 1998. Estimating mean fracture trace length and density from observations in convex windows[J]. Rock Mechanics & Rock Engineering, 31(4): 201-216. doi: 10.1007/s006030050021
    Nefeslioglu H A, Gokceoglu C, Sonmez H. 2006. Indirect determination of weighted joint density(wJd) by empirical and fuzzy models: Supren(Eskisehir, Turkey) marbles[J]. Engineering Geology, 85(3): 251-269. http://www.sciencedirect.com/science/article/pii/S0013795206000986
    Pahl P J. 1981. Estimating the mean length of discontinuity traces[J]. International Journal of Rock Mechanics & Mining Sciences, 18(3): 221-228. http://www.sciencedirect.com/science/article/pii/0148906281909761
    Palmstrom A. 1995. Rmi-a rock mass characterization system for rock engineering purposes[D]. Norway: University of Oslo.
    Song J J. 2006. Estimation of areal frequency and mean trace length of discontinuities observed in non-planar surfaces[J]. Rock Mechanics & Rock Engineering, 39(2): 131-146. doi: 10.1007/s00603-005-0060-9
    Sonmez H, Nefeslioglu H A, Gokceoglu C. 2004. Determination of wJd on rock exposures including wide spaced joints[J]. Rock Mechanics & Rock Engineering, 37(5): 403-413. doi: 10.1007/s00603-004-0039-y
    Terzaghi R D. 1965. Sources of error in joint surveys[J]. Géotechnique, 15(3): 287-304. doi: 10.1680/geot.1965.15.3.287
    Wang J, Chen L, Su R, et al. 2018. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 10(3): 411-435. doi: 10.1016/j.jrmge.2018.03.002
    Wu Q, Kulatilake P H S W, Tang H M. 2011. Comparison of rock discontinuity mean trace length and density estimation methods using discontinuity data from an outcrop in Wenchuan area, China[J]. Computers & Geotechnics, 38(2): 258-268. http://www.researchgate.net/publication/287330417_Estimation_of_rock_discontinuity_mean_trace_length_and_density_from_an_outcrop_in_Wenchuan_China
    Yang C H, Bao H T, Wang G B, et al. 2006. Estimation of mean trace length and trace midpoint density of rock mass joints[J]. Chinese Journal of Rock Mechanics and Engineering, 25(12): 2475-2480. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200612017.htm
    Zhang K, Wu F Q, Sha P, et al. 2019. Geological cataloging method with oblique photography of UAV for open-pit slope and its application[J]. Journal of Engineering Geology, 27(6): 1448-1455. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906027.htm
    Zhang L, Einstein H H. 1998. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics & Rock Engineering, 31(4): 217-235. http://www.springerlink.com/content/marjgbdq89ddj327/
    Zhao M Y, Wang F Y, Wang M C, et al. 2018. Rock mass discontinuity acquisition based on photogrammetry of UAV[J]. Journal of Engineering Geology, 26 (S1): 480-487.
    陈剑平, 王清, 肖树芳, 等. 1996. 不连续面平均速长概率估值法及其应用[J]. 工程地质学报, 4(1): 8-13. http://www.gcdz.org/article/id/9793
    韩振华, 张路青, 袁广祥. 2019. 基于BQ系统的阿拉善巴彦诺日公NRG01号钻孔岩体质量评价[J]. 工程地质学报, 27(6): 1208-1215. doi: 10.13544/j.cnki.jeg.2017-183
    雷光伟, 杨春和, 王贵宾, 等. 2016. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报, 35(2): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602004.htm
    刘健, 陈亮, 王春萍, 等. 2018. 观测方位和面积对节理密度表征指标的影响-算例分析[C]//第七届废物地下处置学术研讨会论文集. 上海: [s. n. ]: 77-82.
    刘明, 黄润秋, 严明, 等. 2016. 倾斜面上岩体结构面加权节理密度(wJd)的获取[J]. 岩石力学与工程学报, 35(10): 1975-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610004.htm
    杨春和, 包宏涛, 王贵宾, 等. 2006. 岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报, 25(12): 2475-2480. doi: 10.3321/j.issn:1000-6915.2006.12.013
    张恺, 伍法权, 沙鹏, 等. 2019. 基于无人机倾斜摄影的矿山边坡岩体结构编录方法与工程应用[J]. 工程地质学报, 27(6): 1448-1455. doi: 10.13544/j.cnki.jeg.2019-105
    赵明宇, 王凤艳, 王明常, 等. 2018. 基于无人机摄影测量的岩体结构面信息获取[J]. 工程地质学报, 26 (S1): 480-487. doi: 10.13544/j.cnki.jeg.2018173
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  38
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2020-01-17
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回